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Abstract 

 

Smart devices in the Internet of Things (IoT) have transformed the management of 

personal and industrial spaces.  Leveraging inexpensive computing, smart devices enable 

remote sensing and automated control over a diverse range of processes.  Even as IoT 

devices provide numerous benefits, it is vital that their emerging security implications are 

studied.  IoT device design typically focuses on cost efficiency and time to market, leading 

to limited built-in encryption, questionable supply chains, and poor data security.  In a 2017 

report, the United States Government Accountability Office recommended that the 

Department of Defense investigate the risks IoT devices pose to operations security, 

information leakage, and endangerment of senior leaders [1].   

Recent research has shown that it is possible to model a subject’s pattern-of-life 

through data leakage from Bluetooth Low Energy (BLE) and Wi-Fi smart home devices 

[2].  A key step in establishing pattern-of-life is the identification of the device types within 

the smart home.  Device type is defined as the functional purpose of the IoT device, e.g., 

camera, lock, and plug.  This research hypothesizes that machine learning algorithms can 

be used to accurately perform classification of smart home devices.   

To test this hypothesis, a Smart Home Environment (SHE) is built using a variety 

of commercially-available BLE and Wi-Fi devices.  SHE produces actual smart device 

traffic that is used to create a dataset for machine learning classification.  Six device types 

are included in SHE: door sensors, locks, and temperature sensors using BLE, and smart 
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bulbs, cameras, and smart plugs using Wi-Fi.  In addition, a device classification pipeline 

(DCP) is designed to collect and preprocess the wireless traffic, extract features, and 

produce tuned models for testing.  K-nearest neighbors (KNN), linear discriminant analysis 

(LDA), and random forests (RF) classifiers are built and tuned for experimental testing.   

During this experiment, the classifiers are tested on their ability to distinguish 

device types in a multiclass classification scheme.  Classifier performance is evaluated 

using the Matthews correlation coefficient (MCC), mean recall, and mean precision 

metrics.  Using all available features, the classifier with the best overall performance is the 

KNN classifier.  The KNN classifier was able to identify BLE device types with an MCC 

of 0.55, a mean precision of 54%, and a mean recall of 64%, and Wi-Fi device types with 

an MCC of 0.71, a mean precision of 81%, and a mean recall of 81%.  Experimental results 

provide support towards the hypothesis that machine learning can classify IoT device types 

to a high level of performance, but more work is necessary to build a more robust classifier.    
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EVALUATING MACHINE LEARNING TECHNIQUES 

FOR SMART HOME DEVICE CLASSIFICATION 

 

I. Introduction 

1.1 Background 

Smart devices are increasingly being used in consumer and industrial applications.  

Once connected to the Internet, these smart devices allow for remote sensing and control 

of a wide variety of processes.  The Internet of Things (IoT) is expected to have a network 

of over 31 billion devices by 2020 [3].  IoT devices have the potential to affect personal 

and commercial spaces, and therefore need to be studied for cybersecurity implications.  

IoT device design often focuses on minimizing power and cost [4].  Such design decisions 

can result in deficient security that cause information leakage.  IoT devices regularly 

perform automatic functions upon a subject’s arrival or departure.  Traffic from these 

devices can be analyzed to figure out a subject’s pattern-of-life [2].  By learning which 

type of devices are activating upon a subject’s presence, a malicious actor can gain 

exploitable information.  Therefore, it is important to study whether such IoT device 

classification is possible. 

1.2 Problem Statement 

Recent research has shown that it is possible to model a subject’s pattern-of-life 

through data leakage from Bluetooth Low Energy (BLE) and Wi-Fi smart home devices 

[2].  BLE and Wi-Fi are two widely-used protocols in IoT devices that can leak sensitive 
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information wirelessly, available for malicious attackers to collect and analyze without user 

awareness.  A critical step in establishing pattern-of-life is the identification of the device 

types within the smart home.  Device type is defined as the functional purpose of the IoT 

device, and extends across a broad spectrum including cameras, electrical plugs, light 

bulbs, door locks, temperature sensors, and motion sensors.  Previous techniques in IoT 

device classification have been limited to manual packet analysis, a deliberate process that 

requires specific knowledge of target devices.  This research seeks to leverage machine 

learning algorithms to produce a generalized and scalable method of IoT device 

classification.  The problem statement this work answers is whether machine learning can 

be applied to successfully classify devices into their respective device types using collected 

wireless traffic. 

1.3 Hypothesis and Research Goals  

This work hypothesizes that if machine learning classifiers are trained using 

wireless traffic from a realistic smart home environment, then the classifiers can 

successfully identify the device type of IoT devices to a high degree of accuracy.    

The goals that guide this research are: 

1. Design and build a source of realistic smart home device traffic. 

2. Develop procedures to collect and prepare the wireless traffic for machine 

learning classification. 

3. Evaluate the performance of the linear discriminant analysis (LDA), k-

nearest neighbors (KNN), and random forests (RF) machine learning 

classification algorithms in determining IoT device types. 
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4. Determine which features are most useful for classification purposes. 

5. Assess the suitability of machine learning in IoT device type classification. 

1.4 Approach 

A smart home environment composed of commercially-available BLE and Wi-Fi 

devices is assembled to produce authentic wireless traffic.  The wireless traffic is collected 

and preprocessed into a dataset suitable for machine learning.  Classifiers are tuned and 

trained.  The models are tested on a number of classification tasks to evaluate their 

performance.  Results are synthesized to consider algorithm performance and device 

security implications.  The machine learning approach uses a multiclass classification 

scheme, with three device types per wireless protocol used as response classes.  K-nearest 

neighbors, random forests, and linear discriminant analysis are the classification algorithms 

used.   

1.5 Assumptions/Limitations 

The following assumptions and limitations are recognized throughout this 

experiment:  

• The devices selected in the smart home environment are representative of 

an authentic smart home. 

• All devices are compatible with an Apple iPhone. 

• All algorithms are accurately implemented by third-party libraries. 

1.6 Contributions 

This research adds to the fields of IoT security and machine learning classification 

through two primary contributions: 
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1. Smart Home Environment (SHE): A smart home architecture using BLE 

and Wi-Fi smart devices is designed to provide realistic wireless traffic that 

can be used for analysis and classification.   

2. Device Classification Pipeline (DCP):  A system of machine learning 

techniques is applied to collect, process, and analyze the wireless traffic 

produced by the smart home devices.  

1.7 Thesis Overview 

This thesis is organized into six chapters.  Chapter 2 presents an overview of 

relevant wireless protocols, machine learning techniques, classification algorithms, and 

other related research.  Chapter 3 provides the design details of the SHE and DCP systems 

used to create, capture, prepare, and analyze the wireless traffic used in the experiment.  

Chapter 4 discusses the experiment methodology, while Chapter 5 presents the analysis of 

results.  Lastly, Chapter 6 provides a summary of the work and considers possible avenues 

for future work in this research area.  
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II. Background and Related Research 

2.1 Overview 

This chapter presents a technical review of the wireless protocols Wi-Fi and BLE 

in Sections 2.2 and 2.3 respectively to describe what features of their architecture and 

packet structure are applied in machine learning classification.  Section 2.4 follows with a 

brief description of machine learning, and Section 2.5 provides a summary of traffic 

analysis research, the current state of IoT device classification, and a discussion of related 

research.  Lastly, Section 2.6 offers a list of common terminology used throughout this 

research.   

2.2 Wi-Fi  

By far, the most commonly used technology for wireless local area networks 

(WLANs) is defined by the IEEE 802.11 standard, also known as Wi-Fi [1].  IEEE 802.11, 

hereafter referred to as 802.11, defines the medium access control (MAC) and Physical 

Layers (PHY).  In wireless networks, a station (STA) is the addressable unit, and the basic 

service set (BSS) is the fundamental building block of a WLAN.  The BSS is the effective 

area within which member STAs of the BSS can continue communication.  In 

infrastructure mode, WLAN topology is centered on an access point (AP) that connects 

STAs from the WLAN to the wired network.  A service set identifier (SSID) serves as the 

primary name associated with a WLAN and is typically used by STAs to find WLANs. 

Association is the process through which a STA connects to an AP.  802.11 expects 

the AP to periodically send out beacon frames, containing the AP’s SSID and media access 

control (MAC) address.  The STA seeks out these beacon frames by continuously scanning 
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the wireless channels defined in 802.11.  Once an AP has been selected, the STA sends an 

association request frame to the AP, and the AP responds with an association response 

frame.  After this process, the AP typically assigns an IP address to the STA through a 

Dynamic Host Configuration Protocol (DHCP) exchange.  Once completed, the STA has 

joined the AP’s subnet and is viewed as simply another device in that subnet.  

The general frame used to transmit data in 802.11 is illustrated in Figure 1.  The 

frame consists of various fields: frame control, duration/identification, address fields, 

sequence control, frame body, and frame check sequence (FCS).  The frame control field 

contains the protocol version, frame type and subtype, and other control information.  The 

duration/identification field specifies the transmission time required for the frame.  The 

four address fields include the destination address, source address, receiver address, and, 

occasionally, the transmitter address.  The sequence control field helps identify duplicate 

frames.  The frame body, also known as the Data field, moves the higher-layer payload 

between stations.   The FCS is a checksum appended to the frame to detect corruption.  If 

the receiver calculates a different FCS than the FCS included in the frame, the frame is 

deemed corrupted and is discarded.  

 

Figure 1.  Wi-Fi Frame Fields [5] 

2.3 Bluetooth Low Energy 

Bluetooth Low Energy (BLE) is a separate technology from classic Bluetooth, with 

different design goals [6].  BLE, sometimes referred to as Bluetooth 4.0, was first 
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introduced in 2010 by the Bluetooth Core Specification 4.0 [7].  While classic Bluetooth 

focuses on high data rates, BLE has been optimized for ultra-low power applications.  

Bluetooth Low Energy is not trying to improve on Bluetooth classic; instead, it targets new 

applications that have not previously used open wireless standards.  These applications are 

those that require devices to send minimal octets of data from once a second to once every 

few days.  By design, BLE is intended to minimize not only overall activity, but even the 

time required to do anything useful.  If a device is operating, even if it is nothing more than 

checking whether it needs to send or receive something, it is using energy.  

Certain key elements support low cost, including its industrial, scientific, and 

medical (ISM) band, intellectual property license and low power.  The 2.4 GHz ISM band 

may have poor propagation, but is available worldwide with no license requirements.  The 

Bluetooth Special Interest Group (SIG) only requires a very low cost intellectual property 

license.  Finally, the best way to design a low-cost device is to reduce required materials 

such as batteries.  BLE was designed to work with the smallest, cheapest, and most readily 

available battery option – button-cell batteries.  

The BLE architecture is split into three parts: controller, host, and applications, as 

shown in Figure 2.  The controller is a physical device that transmits and receives radio 

signals, and can convert these signals into packets with information.  Within the controller 

are the physical and link layers, as well as the lower half of the Host Controller Interface.  

The controller can be identified as the Bluetooth chip or radio.  The controller 

communicates to other devices using an antenna, and to the host using the Host Controller 

Interface.   
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The host is a software stack that directs how multiple devices communicate with 

one another, typically managing several services at the same time.  The host controls the 

Logical Link Control and Adaptation Protocol (L2CAP), the Security Manager Protocol, 

Attribute Protocol, Generic Attribute Profile (GATT), and Generic Access Profile (GAP).  

The L2CAP handles the passing of data between host and the controller through channels.  

BLE uses three fixed channels: one each for connection management data, the Security 

Manager, and the Attribute Protocol.  The Security Manager Protocol handles device 

pairing and key distribution.  The Attribute Protocol defines the rules for accessing data by 

another device through the use of attributes.  The GATT resides above the Attributes 

Protocol and defines the types of attributes and how they can be used.  More detail on how 

attributes work is included in Section 2.3.5.  Lastly, the GAP controls how devices 

discover, connect, and provide information to users in the application layer.  It also outlines 

the procedures needed to discover, connect, and pair with other devices by controlling the 

link layer states.  Finally, applications use the BLE architecture to provide various 

functions to users. 
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Figure 2.  BLE Architecture [6] 

The physical layer of the controller transmits and receives bits using the 2.4 GHz 

band.  The frequency of the radio waves use a modulation scheme called Gaussian 

Frequency Shift Keying (GFSK) that shifts the frequency slight up and down over a 

Gaussian filter.  Compared to classic Bluetooth’s 79 1-MHz channels, BLE is split into 40 

separate channels, with a 2 MHz separation between one another, as shown in Figure 3.  

Figure 3 also shows the advertising channels, indicated by the darkened channels.  When 

transmitting data, BLE transmits at the rate of 1 million bits per second (Mbps), with a 

maximum transmit power of 10 mW.  
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Figure 3.  BLE Channel Map [6] 

2.3.1 BLE Link-Layer States 

The link layer describes packet details, advertising, and data channels.  It also 

describes how device discovery, data broadcasting, and connections operate.  As shown in 

Figure 4, the link layer defines five states: Standby, Advertising, Scanning, Initiating, and 

Connected.   

 

Figure 4.  BLE States [6] 
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Upon powering on, devices start in the standby state and remain there until the host 

layers instruct them otherwise.  Devices in the standby state can move into all other states.  

Once fully powered, the advertising state can be initiated by the application through the 

GAP. In the advertising state, the link layer can transmit advertising packets or respond to 

scan requests.  Devices that want to be discoverable or connectable must be in the 

advertising state.  Devices in the advertising state can only move to the connected or 

standby state.  

The scanning state allows a device to receive advertising channel packets from 

other devices in the local area.  There are two types of scanning: passive scanning and 

active scanning.  Passive scanning only receives advertising packets; the device never 

transmits anything.  In active scanning, the device additionally sends scan requests to all 

advertising devices.  The advertising device then replies with a scan response.  Both the 

scan requests and response packets are sent on the advertising channel.  

To initiate a connection between devices, the link layer must go through the 

initiating state.  In this state, the initiating device listens for advertising packets from the 

device with which it is trying to connect.  Once an advertising packet is received, the link 

layer sends a connect request to the advertising device and moves into the connected state.   

The last state of the link layer is the connected state.  The connected state can only 

be entered through the advertising or initiating states.  It is only in the connected state that 

data channel packets are sent and received.  There are two substates: master or slave.  Only 

the device that initiates the connection can become the master.  A master device must 

regularly send packets to the slave device.  The slave substate can only be entered from the 
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advertising state.  The device that becomes the slave must have been advertising to another 

device.  A slave device can only transmit in response to the master device.  Devices cannot 

be both master and slave simultaneously, nor can a device be a slave of two masters at the 

same time.  

2.3.2 BLE Packet Structure 

The packet is the standard data block of the link layer.  There are two types of 

packets: advertising and data packets.  Advertising packets are used to find and connect to 

other devices, while data packets are used once a connection is established.  The packet 

type is determined by the channel on which the packet is transmitted.  If a packet is 

transmitted on one of the three advertising channels, then it is an advertising packet; if it is 

transmitted on any of the 37 data channels, it is a data packet.  

Link-layer packets follow the structure as displayed in Figure 5.  These are divided 

into the preamble, access address, header, length, data and cyclic redundancy check (CRC) 

fields.  

 

Figure 5.  BLE Link-Layer Packet Structure [6] 

The preamble, or the first 8 bits of a packet, is always either a 01010101 or 

10101010 sequence, randomly selected.  These simple sequences allow the radio to adjust 
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gain and determine the frequencies used for zero and one bits.  The access address is the 

next 32 bits and can be one of two types based on packet type: advertising access address 

or data access address.  Advertising access addresses are set at a fixed value 

(0x8E89BED6) to help standardize the advertising process.  Data channels use a different 

random access address on each and every connection, which is used when data must be 

reliably delivered to another device.  

The header field varies based on the packet type.  For advertising packets, the 

header contains the advertising protocol data unit (PDU) type.  Table 1 provides a summary 

for each PDU type.  ADV_IND indicates that the device is advertising as connectable 

(available to create a connection) and undirected (not looking to connect to a specific 

device); this is the advertising packet type most commonly used.  ADV_DIRECT_IND 

indicates that the device is connected and directed (looking for a specific device with which 

to connect).  ADV_NONCONN_IND indicates that the device is nonconnectable (refuses 

to connect) and undirected; this is used by devices seeking to only broadcast data.  

ADV_SCAN_IND, SCAN_REQ, and SCAN_RSP are used during active scanning.  

ADV_SCAN_IND indicates that the advertising device is open to active scanning, 

SCAN_REQ is a request made by the initiating device to receive a scan response, and 

SCAN_RSP is the scan response itself.  Lastly, the CONNECT_REQ header type is sent 

by an initiating device to an advertising device when the initiating device wants to create a 

connection.  CONNECT_REQ packets contain information needed to establish a 

connection. 
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Table 1.  Advertising PDU Types 

  PDU Type Purpose 
1 ADV_IND General advertising indication 
2 ADV_DIRECT_IND Direct connection indication 
3 ADV_NONCONN_IND Nonconnectable advertising indication 
4 ADV_SCAN_IND Scannable indication 
5 SCAN_REQ Active scanning request 
6 SCAN_RSP Active scanning response 
7 CONNECT_REQ Connection request 

 

Data packets have headers containing the logical link identifier (LLID), sequence 

number (SN), next expected sequence number (NESN), and more data, as shown in Figure 

6.  The LLID is used by the link layer to manage the channel for this connection.  The one-

bit sequence number for each new data packet toggles from the previous data packet’s 

sequence number, with the first data packet in a connection having a sequence number of 

zero. The SN allows the receiving device to determine whether the received packet is a 

retransmission of a previous packet or a new packet. The NESN allows for 

acknowledgement of data packets. The last bit in the data packet header is the more data 

bit, where 1 signals that there is more data to transmit, and 0 signals the end of the data 

transmission.   
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Figure 6.  BLE Data Packet 

The length field reports the size of the packet, with a range of valid values from 6 

to 37 bytes for advertising packets, and 0 to 31 bytes for data packets.  The payload is the 

actual data that is being transmitted for use by the application.  The final part of the packet 

is a 3-byte CRC.  The CRC is calcuated using the header, length and payload fields, and 

serves to detect accidental changes to raw data.  

2.3.3 Creating Connections 

A connection is required to reliably allow for two-way data transfer.  Figure 7 

shows how a connection is typically created. The first step is for one device to advertise 

using an advertising packet (commonly with ADV_IND) and for another device to initiate 

a connection to the advertising device with a CONNECT_REQ packet.  Using the 

information in the CONNECT_REQ packet, a connection is created between the two 
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devices, with the initiating device now the master device and the advertising device as the 

slave device.   

 

Figure 7.  BLE Connection and Data Sending Diagram 

All necessary information is contained within this CONNECT_REQ packet, 

including access address, connection interval, and channel map.  The access address is 

randomly determined by the master.  If a master has multiple slaves, it chooses a different 

access address for each slave.  When in a connection, the master must transmit a packet to 

the slave once every connection event.  The connection interval determines how frequently 

this happens; the connection interval can be any period between 7.5 milliseconds to 4 

seconds.  Lastly, the channel map is a bit mask of the data channels the connection uses, 

where if the bit is set to one, then the channel is deemed a good channel and can be used 
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for data traffic, and if the bit is set to zero, the channel is deemed a bad channel, and is 

never used for data traffic. 

The Generic Access Profile (GAP) defines the discovery and connection process 

between devices.  The GAP provides two types of discoverability: limited and general.  

Limited-discoverable mode is used by devices that have just been made discoverable, and 

are meant to stand out from general-discoverable devices.  As such, devices are not allowed 

to remain in the limited-discoverable mode for more than 30 seconds.  The general-

discoverable mode is used by devices that are discoverable but have been inactive for a 

period of time.  This becomes the default mode for devices once they exceed the 30 seconds 

allowed for limited-discoverable mode. 

2.3.4 Sending Data 

Once in a connection, devices can send data to each other using data packets.  Data 

packets have four fields in their header: logical link identifier, sequence number, next 

expected sequence number and more data.  The logical link identifer (LLID) determines 

what kind of data the packet contains.  The LLID can indicate that the packet is a link layer 

control packet, which is used by the link layer to manage connections.  Otherwise, it is a 

data packet intended for the host, and can either be a start packet or continuation packet.  

Start packets signal the beginning of a series of data packets, and continuation packets 

make up the rest of the transmission.  Interestingly, because the link layer does not need to 

know the entire length of the data, continuation packets can be continuously sent.  Data 

packets have a single bit for the sequence number, beginning with zero for the first data 

packet.  It then alternates between one and zero for each new data packet.  To acknowledge 
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a data packet, the next expected sequence number (NESN) is used.  If the data packet 

received by a device has a sequence number of one, then the NESN is zero; otherwise, the 

data packet would be retransmitted.  Lastly, the MD bit indicates that the transmitting 

device has more data ready to send. If one, then the receiving device maintains the 

connection. If zero, then the two devices can close the connection to save power. 

Figure 8 provides an example of how connection events occur between two 

connected devices.  A connection event is the start of a set of data packets sent from the 

master to the slave and back again.  Connection events are always initiated by the master 

device.   The master device initiates the transmission by sending a data packet with SN 

zero, NESN zero, and MD one. The slave device receives this packet and attempts to send 

its own packet, with SN zero, NESN one (acknowledging that the previous packet) and 

MD one.  However this packet was not properly received by the master device. Without an 

acknowledgment from the slave device, the master device retransmits its first packet. The 

slave device detects that retransmission of the previous packet is required, and does so. 

This time, the packet is properly received. The master device no longer needs more data 

from the slave device and sends a packet with the MD bit zero. The slave device 

acknowledges this by sending its own packet with MD zero, and the connection event 

between the two devices end. A second connection event is initiated by the master, but the 

MD bit is set to zero.  This type of connection event is typically performed to check on the 

slave’s status, serving as a “ping”.  The slave receives the packet, and seeing that MD is 

zero, acknowledges the previous packet and ends the connection event. 
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Figure 8.  Data Transmission [6] 

2.3.5 Attributes 

The Attribute Protocol, shown in Figure 2, is central to understanding Bluetooth 

Low Energy.  BLE is designed as a client-server architecture, where a server is a device 

that has data, and a client is any device that is using data from another device.  Figure 9 

shows how the client-server architecture works. In practice, the master device acts as the 

client requesting data from its slave devices who act as servers.  
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Figure 9.  GATT Client-Server Interaction [8] 

Attributes are the fundamental structure through which BLE achieves the client-

server architecture. The Generic Attribute Profile (GAP) is a set of rules that define how 

to present, group, and transfer data using BLE.  The GAP defines attributes as a piece of 

labeled, addressable data, and each attribute has three parts: a handle, a type, and a value.  

The attribute handle is the attribute’s 16-bit address.  The attribute type is comparable to a 

data type in programming languages, and is used to identify the nature of the attribute’s 

information (e.g., temperature, pressure, time, etc.).  Lastly, the attribute value is the actual 

value and has a size between 0 to 512 bytes.  Attributes are stored in an attribute database, 

which is in turn contained within an attribute server.  Clients communicate with the 

attribute server to obtain desired information.  There can only be one attribute server per 

device, and every device must have both an attribute server and an attribute database.  

Permissions must be set for every attribute in an attribute database, and these 

permissions come in three categories: access, authentication, and authorization.  Access 

permissions must be set to readable, writable, or readable-writable.  Authentication and 

authorization permissions are not required and can be left open.  The difference between 

the two permission types is that authentication occurs at the client level, while authorization 

occurs at the server level.  It is important to note that these permissions only relate to the 
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attribute value; any device has permission to view the attribute handles and types on a given 

device.  

The Attribute Protocol is the protocol through which clients find and access 

attributes on an attribute server.  It is a simple protocol with only six basic operations: 

Request, Response, Command, Indication, Confirmation, and Notification.   

A Request is sent by the client when the client wants the server to do an action and 

send back a Response.  A client can only send one Request at a time, and must wait for a 

Response before sending another Request.  A Command is similar to a Request, except no 

Response is needed.  Indications are used by the server to inform a client about an update 

on a given attribute’s value, and require a Confirmation from the client.  Notifications are 

similar to Indications, except they need no Confirmation.  Since Commands and 

Notifications do not require Responses nor Confirmations, they can be sent without any 

restrictions.  If the receiving device cannot handle all the messages, the messages may be 

dropped.  Therefore, Commands and Notifications are unreliable, while Requests and 

Indications are considered reliable.  

Protocol messages are combinations of these basic operations used to perform 

common tasks using the Attribute protocol.  Their role is comparable to library functions 

in programming languages.  Most messages consist of both a Request and a Response 

operation.  For example, the Read Request message uses a Request operation that has a 

handle of a desired attribute, and the Response returns the attribute value.  Protocol 

messages have a wide range of functionality that enable efficient reading, writing, error 

handling, and notifications.  
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For connected devices, the Generic Attribute profile (GATT) defines two basic 

forms of grouping: characteristics and services.  Figure 10 shows how the GATT structure 

organizes characteristics and services. Characteristics are defined attribute types that can 

only contain certain logical values.  The BLE Specification provides over 200 predefined 

characteristics such as Alert Status, Language, Battery Level, and Time Zone that can only 

take on specific values based on their characteristic definition.  A service is a collection of 

characteristics and relationships with other services to perform a given function [9].   

Sometimes refered to as profiles, services expose certain device information and 

functionality in a standardized manner.   

Predefined services include the Battery, Environmental Sensing, and Heart Rate 

services [7].  For example, consider a personal fitness monitoring device that uses the 

Battery, Environmental Sensing, and Heart Rate services.  A user may connect the fitness 

monitor to a smartphone through BLE. Through the Battery service, the user can monitor 

the battery life of the device, ensuring that the device does not run out of power during 

workout sessions. Through the Environmental Sensing service, the user can monitor 

measurement data from the device’s various sensors, such as air temperature, humidity and 

elevation.  Finally, through the Heart Rate service, the user can track one’s heart rate 

throughout the workout session.  While predefined services accommodate common needs, 

custom services can also be created to suit developers’ needs.   
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Figure 10.  GATT Structure [8] 

2.3.6 Security 

The Security Manager (SM), shown in Figure 2, serves two fundamental functions: 

device pairing and message authentication.  These two functions enable the rest of BLE’s 

security features.  Pairing allows two unfamiliar devices to authenticate each other’s 

identity in preparation for activity that requires security.  During pairing, each device first 

determines each other’s input and output capabilities (e.g., no input-no output, display only, 

display yes/no, keyboard only, keyboard display) to determine what level of authentication 

is possible.  For example, if two devices are both display only, they would not be able to 

authenticate via passkey entry, and the SM would default to simply letting the devices pair 

automatically without authentication.  After determining input and outputs, the SM then 

proceeds to authenticate each other using a randomly-generated key, if possible.  This is 

often implemented by the user typing in a six-digit key.  Lastly, keys are distributed 

between the devices.  Message authentication uses the CMAC (Cipher-based Message 
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Authentication Code) algorithm, with the keys distributed using pairing.  An additional 

SignCounter value is used to prevent replay attacks.  

2.4 Machine Learning 

Coined by Arthur Samuel, the term machine learning (ML) refers to a field of 

computer science that applies statistical techniques to give computers the capability to learn 

from data without explicit programming [10].  ML plays a significant role in the fields of 

statistics, data mining, and artificial intelligence.  Machine learning is increasingly being 

applied today to tasks too complex for traditional approaches or have no known algorithm 

[11].  

To illustrate, consider the task of distinguishing between different types of fruit.  

Traditional approaches would need to first study the problem (for example, what is the 

difference between an apple and an avocado) then write rules to solve the problem (apples 

are red, avocados are green).  However, this problem is more complex (some apples are 

also green).  Therefore, additional rules must be included to further refine the solution to 

the program (apples have smooth skin, avocados have pebbled skin).  But as more test 

cases and situations are added, this set of rules grows significantly (watermelons are green 

but have smooth skin), making the maintenance of these rules very difficult for a human 

programmer.  

A typical ML scenario seeks to predict an outcome measurement, usually 

categorical (e.g., type of fruit) or quantitative (e.g., future house prices), using a set of 

features (e.g.,  fruit color, house location) from a dataset [12].  A set of training data is 
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used to observe the outcome and feature measurements.  With this data, a prediction model 

is built to predict the outcome for new cases, or observations.   

Given a sufficiently large dataset, machine learning excels in the type of problem 

presented earlier.  ML applies statistical techniques to reveal patterns within data.  By 

analyzing the data, an ML approach can develop a model using the patterns in the data, and 

then produce a solution.  Furthermore, the solution can reveal certain insights about the 

data that may have been missed.  

There are two broad types of machine learning: supervised learning and 

unsupervised learning.  Supervised learning requires the presence of the outcome 

measurement, or labels, to direct the learning process.  A typical supervised learning task 

is classification, the task of assigning to which set of categories a given observation 

belongs.  In the fruit classification problem, the fruit type would be an example of a label, 

and the task is assigning a fruit type to a given fruit.  

As mentioned, classification is considered supervised learning because it requires 

the presence of labels.  Another supervised learning task is regression.  Regression is the 

task of predicting a numerical value for a given observation.  An example is predicting 

future house prices, given the features of house location and age.  Because of the use of 

labels, supervised learning methods can be evaluated on their performance.  Chapter 3 

provides the details on performance evaluation.  

Unsupervised learning uses unlabeled data.  Unsupervised learning aims to infer 

the structure of data.  A common task for unsupervised learning is clustering.  The goal of 

clustering is to detect groups of similar observations within the data.  These groups may 
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have not been clearly evident, and the detected groups may be used in applications such as 

pattern recognition, compression, and graphics.  An example of a clustering problem would 

be when a website like Amazon or Netflix provides recommendations based on users’ 

browsing history [13].  By clustering items that are similar to those users have previously 

looked at, online retailers or streaming services can suggest certain products or movies. 

2.4.1 Classification Algorithms 

The algorithms used in this experiment are among the most commonly used 

machine learning classification algorithms.  All three algorithms are identified as 

supervised learning algorithms.  Supervised learning requires the outcome measurement 

to direct the learning process.  In classification, the objective is to assign a given 

observation to a particular class or label using a set of inputs or predictors.  Because of 

their use of outcome measurements, supervised learning algorithms may be evaluated on 

their performance. 

2.4.1.1 K-Nearest Neighbors 

 K-Nearest Neighbors (KNN) classifies an observation by finding the observation’s 

k nearest neighbors, where k is an integer, and classifying the observation to the class with 

the highest estimated probability [14].  A commonly used distance metric is Euclidean 

distance, however other distance metrics can be used, such as Manhattan distance or 

Chebyshev distance.  The hyperparameter k determines the number of neighbors KNN 

considers in its classification of an observation.  Supposing 𝑘𝑘 = 3, KNN considers the 

three closest neighbors of 𝑥𝑥0.  The observation is assigned the majority class of these 𝑘𝑘 

nearest neighbors.  KNN does not make assumptions about how the data is distributed [15]. 
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While this approach works well for data with unknown distributions, it leads to a higher 

susceptibility to local anomalies within the data.  Additionally, if there are many 

dimensions in the data, several inputs may be “nearest” to the observation, leading to 

reduced effectiveness.   

2.4.1.2 Linear Discriminant Analysis 

Linear Discriminant Analysis (LDA) is a linear transformation technique first 

proposed by Ronald Fisher in 1936.  LDA models the distribution of the predictors 

independently in each of the response classes, then applies Bayes’ theorem to find an 

estimate of the posterior probability.  A Gaussian or normal distribution is typically used 

to model the distribution of the predictors.  LDA assigns the observation to the response 

class with the highest probability.  When the assumption about the predictors’ distribution 

does not hold, performance is reduced. 

2.4.1.3 Random Forests 

A random forest is an ensemble of decision tree-based algorithms [14].  Decision 

trees divide the feature space into different regions that can then be used to classify 

observations.  By using a multitude (or ensemble) of decision trees, random forests assign 

an observation to the most commonly occurring class in the region to which it belongs.  As 

with a decision tree, there is a danger of overfitting when applying random forests.  

2.5 Related Work 

Wired network traffic analysis has been extensively studied.  Preliminary methods 

targeted port number and payload content analysis; these resulted in considerable success 

at the time [16].  However, these approaches have challenges that limit their effectiveness.  
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Port number analysis is accurate only if networks adhere to port standards, and payload 

analysis cannot cope with encrypted transmissions.   

Transport-layer analysis has been applied to address the limitations of the previous 

methods [17].  In peer-to-peer (P2P) networks where arbitrary ports are most commonly 

used, transport-layer analysis allows the profiling of IP connection patterns.  The 

observation of source-destination IP pairs and IP address-port pairs offered a method of 

studying P2P traffic without any examination of user payload.  However, direct transport-

layer analysis can be time-consuming, and analytical scripts are restricted by programmer 

knowledge.   

Machine learning has emerged as a promising technique for traffic analysis [18].  

Studies can be broadly categorized into unsupervised and supervised approaches.  One of 

the earliest studies using unsupervised learning, McGregor et al. applied clustering 

techniques to group wired traffic flow between six common network protocols and found 

that the data rate was a key feature in this effort [19].  Bernaille et al. used a variation of 

the k-Means algorithm to classify Transmission Control Protocol (TCP) traffic to the 

application type (e.g., file transfer protocol (FTP), hypertext transfer protocol (HTTP), 

secure shell (SSH), etc.) using the packets at the start of traffic flow [20].  This approach 

focused on the packets used during the TCP handshake and was able to classify traffic flow 

with  over 80% accuracy.  However, this work assumed that the handshake can always be 

captured at the onset of traffic flow, which is not always achievable.  It was with Erman et 

al. that web traffic was analyzed using the k-Means approach [21].  Instead of full bi-

directional traffic flow, the work focused on uni-directional flows between server-to-client 
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and client-to-server.  Their results showed that server-to-client datasets produced the 

highest accuracy (95%), and that flow duration, number of bytes and number of packets 

were the features that provided the most value in classifying packets. 

Supervised learning introduced algorithms such as the k-Nearest Neighbors (kNN), 

linear discriminant analysis (LDA), and quadratic discriminant analysis (QDA) to traffic 

analysis.  A study by Roughan et al. used these techniques to classify different network 

applications to specific traffic classes [22].  The considered features were analyzed at the 

packet level, flow level, and connection level.  Packet level features were derived from 

individual packets such as the size of the packet and the time the packet was sent.  Flow 

level features were derived from sequences of packets that shared common field values, 

such as source IP address, destination IP address, and protocol type.  Connection level 

features were derived from transport-layer protocol information such as those found in TCP 

connections.  Of these features, average packet length and flow duration were found to be 

the most valuable.  Moore and Zuev were able to further improve on traffic classification 

accuracy by using Naïve Bayes [23].  The dataset was manually classified beforehand, and 

over 240 features were used to train the classifier.  Using Naïve Bayes alone, the study 

achieved approximately 65% accuracy.  The classifier was then refined to reduce the 

number of features, and accuracy was improved to over 95%.  Auld et al. extended this 

work by applying a Bayesian neural network (NN), further improving classification 

accuracy [24].  The training NN achieved a classification accuracy up to 99% for data 

trained and tested on the same day, and 95% for data trained and tested with an eight-month 

gap.  The features were ranked for value, and the top three features were found to be: count 
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of TCP PUSH packets, total number of bytes in the initial window (TCP handshake) from 

client to server, and total number of bytes in the initial window (TCP handshake) from 

server to client.   

Wireless traffic adds a layer of complexity in traffic analysis.  The most ubiquitous 

wireless network standard, IEEE 802.11 (commonly known as Wi-Fi), uses encryption in 

its wireless transmissions to protect against external eavesdropping.  Nevertheless, 

Atkinson showed that Wi-Fi can still leak private user information using only side-channel 

information similar to those exploited in wired networks [25].  A Random Forests classifier 

was trained on a dataset of Skype activity with around 60,000 observations and 600 

features, and achieved around 97% accuracy.  Furthermore, it was shown that a 

classification accuracy of greater than 95% could be accomplished using only 200 variables 

and 20 trees.  The most valuable features were discovered to be the amount of time between 

Sent frames, and the amount of time between a Received frame and the previous Sent 

frame.   

As for Internet of Things (IoT) devices, there is a shortage of wireless traffic 

analysis in the current literature.  This is likely due to the relative novelty of the IoT.  A 

study by Copos et al. analyzed two IoT devices, the Nest thermostat and Nest Protect smoke 

detector, and succeeded in determining the devices’ Home and Away modes with 88% and 

67% accuracy respectively [26].  Beyer expanded on the use of wireless traffic analysis by 

showing that pattern-of-life profiling is possible using sniffed BLE and Wi-Fi traffic [2].  

By analyzing both incoming and outgoing packet flows of three device types (outlet, 

sensor, and cameras), it was shown that 17 out of 18 IoT devices  could be classified.  Beyer 
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used frame size, measured in bytes, as a primary feature.  Meidan et al. is the first study 

found that applied machine learning to IoT device identification [27].  The goal of the study 

was to determine whether a network device was a personal computer, a smartphone or an 

IoT device.  A dataset was produced using 802.11 wireless traffic from two PCs, two 

smartphones, and ten IoT devices, with device types including baby monitors, refrigerators, 

security cameras, thermostats, and smart outlets.  A classifier was then trained using a 

combination of gradient boosting and Random Forests techniques, and was able to classify 

an IoT device with greater than 99% accuracy.  A robust analysis on feature importance 

was not performed.  Wang et al. is the latest study to apply machine learning techniques to 

traffic analysis of IoT devices [28].  A software-defined network (SDN) framework was 

developed capable of efficient network quality-of-service management.  This was achieved 

through the use of deep-learning-based traffic analysis able to classify encrypted data 

traffic to various applications (e.g., email, Skype video calls, Spotify music streaming, 

etc.).  Three deep-learning techniques were evaluated: multilayer perceptron, stacked 

autoencoder, and convolutional neural networks.   

2.6 Terminology 

The following terms are frequently used throughout this thesis, and are defined here 

for the purpose of clarity: 

• Classification Algorithm/Classifier: a classification technique used to 

distinguish between response classes.  The classification algorithms used in 

this thesis are limited to k-nearest neighbors (KNN), linear discriminant 

analysis (LDA), and random forests (RF).  
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• Device Type: the broad functional purpose of an IoT device, e.g., cameras, 

smart plugs, locks.  The device type is the response class the classifiers in 

this thesis are attempting to identify.  

• Response Class: the output of supervised classification classifiers.  The 

response class referred to in this thesis is the device type. 

• Test dataset: a subset of the dataset reserved to evaluate the classifier’s 

performance.  The test dataset is never used to train the classifier.  

• Training dataset: a subset of the dataset used to train the classifier. 

2.7 Background Summary 

This chapter provides a concise summary on the BLE and Wi-Fi protocols that IoT 

devices use.  It explains the underlying architecture of these protocols and how their 

internal structure apply to machine learning classification.  It offers a brief overview of 

machine learning.  It gives a brief survey into the background research on wired traffic 

analysis and how machine learning has been applied in those efforts.  While extensive 

research has been done in traditional wired traffic, there is a current shortage on IoT traffic 

analysis.  This thesis contributes to the areas of IoT security and machine learning by 

showing how classification techniques may successfully identify IoT devices using 

information leaked in conventional wireless traffic.  
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III. System Design 

3.1 Overview 

This research offers two contributions in analyzing the classification of IoT devices 

using wireless traffic analysis: a Smart Home Environment (SHE) and a Device 

Classification Pipeline (DCP).  SHE is a system of actual IoT devices that produces 

authentic smart home traffic by integrating various BLE and Wi-Fi commercial devices in 

one physical space.  To study the wireless traffic produced by SHE, DCP is used to collect 

and preprocess the wireless traffic into workable data, extract features from the data, and 

produce tuned classifier models ready for testing.  Lastly, data exploration is done to gain 

an initial understanding of the original dataset before any classification is performed.  This 

chapter presents a detailed explanation of SHE, each component of DCP, and the products 

of data exploration on the datasets.  

3.2 Smart Home Environment (SHE) 

SHE is designed to produce actual wireless IoT traffic for analysis.  SHE consists 

of a controller device, and a variety of BLE and Wi-Fi devices.  Wireless traffic produced 

by SHE is collected using sniffing equipment. 

3.2.1 Controller 

An iPhone 6S, using iOS version 12.1, serves as the central controller for all devices 

in SHE.  The iPhone controls a given device using the manufacturer-developed application.  

All applications can be obtained via the App Store.  When the user is within range of SHE, 

the iPhone connects to the Internet via the Wi-Fi router and gains access to the devices in 

SHE.  To interface with BLE devices, the iPhone’s Bluetooth must be turned on.  Once 
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connected through Bluetooth, the user can control the BLE devices using the device’s 

application.  

3.2.2 Wi-Fi Devices  

To provide connectivity to Wi-Fi devices, a 2.4 GHz AP is set up with an SSID of 

“yosemite" and Wi-Fi Protected Access II (WPA2) security.  The AP used is a Netgear 

Nighthawk X4S R7800 router, as shown in Figure 11.  Figure 12 provides the list of AP 

settings.   

 

Figure 11.  Netgear Nighthawk X4S R7800 router used as AP

 

Figure 12.  Wi-Fi Access Point Settings 
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All Wi-Fi devices, identified as 𝑤𝑤2 - 𝑤𝑤16, are connected to the AP.  SHE contains 

five cameras, seven smart plugs, and three light bulbs across four different manufacturers.  

Table 2 shows the list of Wi-Fi devices used in SHE, including details such as device type, 

device manufacturer, device name, and MAC address.  Device MAC addresses are found 

by checking the labels on the physical device.  Appendix A provides complete device 

details, including a device’s model number and serial number.   

Table 2.  Wi-Fi Devices 

ID Manufacturer Device Type Device Name MAC Address 
𝑤𝑤1 Netgear Router Yosemite 78:D2:94:4D:AB:3E 
𝑤𝑤2 Belkin Camera Netcam1 EC:1A:59:E4:FD:41 
𝑤𝑤3 Belkin Camera Netcam2 EC:1A:59:E4:FA:09 
𝑤𝑤4 Belkin Camera Netcam3 EC:1A:59:E5:02:0D 
𝑤𝑤5 Dropcam Camera Dropcam 30:8C:FB:3A:1A:AD 
𝑤𝑤6 TPLink Camera Kasa AC:84:C6:97:7C:CC 
 𝑤𝑤7 Belkin Plug Insight 14:91:82:24:DD:34 
𝑤𝑤8 Belkin Plug Mini 60:38:E0:EE:7C:E5 
𝑤𝑤9 Belkin Plug Switch1 14:91:82:CD:DF:3D 
𝑤𝑤10 Belkin Plug Switch2 B4:75:0E:0D:94:65 
𝑤𝑤11 Belkin Plug Switch3 B4:75:0E:0D:33:D5 
𝑤𝑤12 Belkin Plug Switch4 94:10:3E:2B:7A:55 
𝑤𝑤13 TPLink Plug TpPlug 70:4F:57:F9:E1:B8 
𝑤𝑤14 Lifx Light Bulb Lifx1 D0:73:D5:26:B8:4C 
𝑤𝑤15 Lifx Light Bulb Lifx2 D0:73:D5:26:C9:27 
𝑤𝑤16 TPLink Light Bulb TpBulb B0:4E:26:C5:2A:41 

 

3.2.3 BLE Devices  

To control BLE devices 𝑏𝑏1 - 𝑏𝑏11 , the iPhone is used as a Bluetooth master device.  

SHE contains three locks, four door sensors, and four temperature sensors across five 

different manufacturers.  Table 3 shows the BLE devices used in the smart home 
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environment, including details such as device type, device manufacturer, and device name.  

Appendix A provides complete device details, including a device’s model number and 

serial number.   

Table 3.  BLE Devices 

ID Manufacturer Device Type Device Name 
𝑏𝑏1 August Lock August1 
𝑏𝑏2 August Lock August2 
𝑏𝑏3 Kwikset Lock Kevo 
𝑏𝑏4 BLE Home Door Sensor Home1 
𝑏𝑏5 BLE Home Door Sensor Home2 
𝑏𝑏6 Eve Door Sensor Door1 
𝑏𝑏7 Eve Door Sensor Door2 
𝑏𝑏8 Eve Temperature Sensor Room1 
𝑏𝑏9 Eve Temperature Sensor Room2 
𝑏𝑏10 Eve Temperature Sensor Weather 
𝑏𝑏11 SensorPush Temperature Sensor Push 

 

3.2.4 Device Actions 

To produce sufficient traffic volume for machine learning, devices are set to 

perform actions expected in a smart home environment.  Actions can be programmed or 

triggered.  Programmed actions are set up by the user to occur on a scheduled time and 

interval, while triggered actions are performed by devices upon an event.  Events can occur 

at any time during the experimentation.  To reduce variability, devices of the same device 

type are programmed to perform similar actions at identical times or events.  Table 4 lists 

the complete set of actions used in SHE.   
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Table 4.  Device Actions 

 Device Name Device Type Actions Schedule/Event 
1 Dropcam Camera Send email notification Motion detected 
2 Kasa Camera Send email notification Motion detected 
3 Netcam1 Camera Send email notification Motion detected 
4 Netcam2 Camera Send email notification Motion detected 
5 Netcam3 Camera Send email notification Motion detected 
6 Lifx1 Light Bulb Turn on, Turn off Hourly, on the hour 
7 Lifx2 Light Bulb Turn on, Turn off Hourly, on the hour 
8 TpBulb Light Bulb Turn on, Turn off Hourly, on the hour 
9 TpPlug Plug Turn on, Turn off Hourly, on the hour 
10 Insight Plug Turn on, Turn off Hourly, on the hour 
11 Mini Plug Turn on, Turn off Hourly, on the hour 
12 Switch1 Plug Turn on, Turn off Hourly, on the hour 
13 Switch2 Plug Turn on, Turn off Hourly, on the hour 
14 Switch3 Plug Turn on, Turn off Hourly, on the hour 
15 Switch4 Plug Turn on, Turn off Hourly, on the hour 
16 Door1 Door Sensor Report door state Continuous 
17 Door2 Door Sensor Report door state Continuous 
18 Home1 Door Sensor Report door state Continuous 
19 Home2 Door Sensor Report door state Continuous 
20 August1 Lock Report lock state Continuous 
21 August2 Lock Report lock state Continuous 
22 Kevo Lock Report lock state Continuous 
23 Room1 Temp Sensor Report temperature Continuous 
24 Room2 Temp Sensor Report temperature Continuous 
25 Weather Temp Sensor Report temperature Continuous 
26 Push Temp Sensor Report temperature Continuous 

 

3.2.5 Device Location and Setup 

All device locations are kept constant in SHE, except for the iPhone controller 

which typically is on the user and is therefore not at a fixed location.  Figure 13 shows the 

location of each device in SHE.  Wi-Fi devices are indicated by boxes with solid outlines, 

and BLE devices are indicated by boxes with dashed outlines.  The area containing SHE is 
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a one-bedroom apartment with three doors, one set of large windows, a large table, and a 

couch; these items are indicated by grey boxes.  Devices locations are placed near power 

outlets to reduce the need for additional power cords.   

 

Figure 13.  SHE Device Locations (not to scale) 

Figures 13 to 17 show how various devices are set up.  Not all devices are shown 

in the figures, but the overall configuration is similar across device types.  Door sensors 

are placed along the edges of doors, with their door sensor magnets located across them.  

Light bulbs are installed into individual bulb sockets.  Locks are installed into 3D-printed 
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door lock holders with actual door lock parts included.  Plugs are installed into either power 

strips or outlets, with no plugged-in device.  Temperature sensors are placed in a flat 

surface with open space around them.  Cameras are placed around a motion source to 

provide motion for their sensing capabilities.  Figure 38 provides a photograph of the 

camera device setup.   

 

 

Figure 14.  Door Sensor Setup 
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Figure 15.  Light Bulb Setup 

 

Figure 16.  Lock Setup 
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Figure 17.  Plug Setup 

 

 

Figure 18.  Temperature Sensor Setup 
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3.3 Device Classification Pipeline (DCP)  

DCP is designed to collect and preprocess the wireless traffic into workable data, 

extract features from the data, and produce tuned classifier models ready for testing.  Figure 

19 shows the DCP system diagram and its three components: (i) data collection, (ii) data 

preprocessing, and (iii) model tuning.  The outputs of DCP are tuned linear discriminant 

analysis (LDA), k-nearest neighbors (KNN), and random forests (RF) classifiers for model 

testing, as well as the test dataset.  The following sections describe each component and 

their functions.   

Data collection is accomplished using user-inputted commands and scripts, as 

described in Section 3.3.2, while data preprocessing and model tuning are accomplished 

using the MulticlassDCP class written in Python.  The MulticlassDCP class contains two 

sub-classes, BLEMulticlassDCP and WifiMulticlassDCP, one for each protocol.   

 

Figure 19.  DCP System Diagram 

 

 



 

43 

3.3.1 Data Collection Hardware 

A workstation is used to run all components of DCP.  The workstation is an Acer 

Aspire E15 with a 64-bit Intel Core i5-6200U 2.3 GHz processor, 8 GB DD4 RAM, 256 

GB solid-state hard drive, and runs Kali Linux 2018.4 as the operating system.  The 

scanning and sniffing equipment consists of the Plugable Bluetooth adapter, three BLE 

sniffers (Ubertooth One with firmware 2018-08-R1), and a long-range dual-band Wi-Fi 

adapter (Alfa AWUS036ACH); all equipment is connected to the workstation using 

Universal Serial Bus (USB).  Each Ubertooth One sniffer uses a 2.4 GHz 2.2 dBi antenna, 

while the Alfa card uses a 2.4 GHz and 5 GHz dual-band dipole antenna.  Figure 20 

provides images for these equipment.   

 

Figure 20.  Scanning and Sniffing Equipment.  Plugable Bluetooth adapter (left), 

Alfa AWUS036ACH Wi-Fi adapter (center), and Ubertooth One BLE sniffer (right) 

[29]–[31] 
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3.3.1.1 Sniffer Distance Separation 

All sniffers, Wi-Fi and BLE, operate in the 2.4 GHz band and must be horizontally 

isolated to prevent interference.  The required distance between antennae, 𝑑𝑑, to ensure 

horizontal isolation is given by the Fraunhofer distance equation 

𝒅𝒅 ≥ 𝟐𝟐𝑫𝑫𝟐𝟐

𝝀𝝀
                                                   (1) 

where 𝐷𝐷 is the antenna length in meters and 𝜆𝜆 is the wavelength of the device frequency 

band in Hz [32].  The Ubertooth One sniffers have 3.5 inch long antennae and operate at 

an average wavelength of 2441 MHz, and the Alfa card has 6.5 inch long antennae and 

operate at an average wavelength of 2412 MHz. Applying these values to (1) yields a 

separation distance of about 5 inches for the Ubertooth One sniffers and 17 inches for the 

Alfa card antenna.  Separation distances are maintained by affixing the Ubertooth One 

sniffers on a wooden board and ensuring that the Alfa card is located at an appropriate 

distance, as shown in Figure 21.   

3.3.2 Data Collection 

Data collection supplies the raw data needed for data preprocessing.  Data 

collection occurs in two steps: scanning and sniffing.  Scanning collects necessary 

information required for sniffing and analysis, and sniffing gathers BLE and Wi-Fi wireless 

traffic and stores them into packet capture files (pcap).  The scanning and sniffing 

procedures vary for BLE and Wi-Fi devices.   
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Figure 21.  Sniffer Layout 

3.3.2.1 Wi-Fi Devices 

Wi-Fi scanning is used to find the AP MAC address, AP channel, and associated 

Wi-Fi device MAC addresses.  Prior to scanning, the Alfa card is plugged into the 

workstation via USB.  Figure 22 shows the commands used to prepare the Alfa card for 

scanning (note that the specific wireless interface “wlan1” may vary on other devices): 

(i) airmon-ng check kill − end any processes that may affect operation,  
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(ii) ifconfig wlan1 down − turn off the wireless interface,  

(iii) iwconfig wlan1 mode monitor − set wireless interface to monitor mode,  

(iv) ifconfig wlan1 down − turn on the wireless interface, and  

(v) iwconfig − verify that the changes occurred successfully.  The wireless 

interface (in this case, wlan1) should be set to monitor mode, as indicated 

by the red box.  

Figure 23 shows the command used to scan for APs.  This scan discovers the 

following information: (1) the target AP’s MAC address, (2) AP channel, and (3) AP SSID. 

The next step is scanning for all Wi-Fi devices associated with the target AP.  Figure 

24 shows the command used to accomplish this.  The resulting list of MAC addresses is 

compared against the list in Table 2 to ensure all Wi-Fi devices are detected. 

 

Figure 22.  Commands to prepare Alfa card for data collection 
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Figure 23.  Commands used to scan for Wi-Fi AP 

Wi-Fi sniffing is used to collect wireless traffic from the Wi-Fi devices.  Prior to 

scanning, ensure that the Alfa card is first set to monitor mode (see Figure 22.  If monitor 

mode is not set, execute all the commands in Figure 22).  The airodump-ng tool from the 

aircrack-ng suite is then used to capture raw Wi-Fi frames.  To use airdump-ng, the wireless 

interface (“wlan1”), output file format (“pcap”), target AP MAC address 

(“78d2944dab3e”), and target AP channel (“9”) must be set.  The command is  

airodump-ng wlan1 –o pcap –w wifi –bssid 78d2944dab3e –c 9 
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Figure 24.  Command used to scan for Wi-Fi devices associated to the AP  

3.3.2.2 BLE Devices 

BLE scanning is used to discover device names and device addresses from 

advertising devices.  Prior to scanning, the Plugable adapter is connected via USB.  Figure 

25 shows the commands used to scan for advertising BLE devices: 

(i) service bluetooth start − start the Bluetooth service,  

(ii) hciconfig hci1 up − open and initialize the Bluetooth device, and 

(iii) hcitool lescan− scan for BLE devices. 
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Figure 25.  Commands used to scan for BLE devices 

BLE sniffing is used to collect wireless traffic from the BLE devices.  Prior to 

scanning, three Ubertooth One sniffers are connected to the workstation via USB.  Each 

Ubertooth One device (“U0” – “U2”) is set to sniff on one of three advertisement channels 

(“A37”-“A39”), to follow connections (“f”), and to create a pcap output file (“q”).  To 

operate a single Ubertooth One, the command is  

ubertooth-btle –f –U0 –A37 –qble.pcap 

 

3.3.3 Data Preprocessing 

Data preprocessing changes the collected raw data into a dataset suitable for 

machine learning classifiers.  Data preprocessing serves two objectives: feature extraction, 

and data transformation.  Feature extraction is used to build numerical and categorical 

values (features) that represent information contained in the raw data.  Data transformation 

is used to format features into a representation more suitable for the machine learning 
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classifiers.  Data preprocessing varies between Wi-Fi and BLE devices, and are discussed 

separately.  Scaling is not performed for any numerical feature.  

3.3.3.1 Wi-Fi Preprocessing 

Wi-Fi preprocessing is used to create a dataframe containing the device type 

response class, associated packet count feature, packet length feature, packet subtype 

features, vendor features, device name, set, source address, and packet time.   

After data collection, the Wi-Fi pcap files are combined into one master pcap file, 

then parsed using pyshark, a Python wrapper for Wireshark packet dissectors.  The list of 

device MAC addresses generated during data collection is then used to create a comma-

separated values (csv) file for each known Wi-Fi device.  The MAC addresses are collected 

to determine which devices are part of SHE, but are not used in the classification process.  

Information about packet time, packet length, and data packet subtype are extracted from 

each data packet.  Time refers to the time the packet was transmitted and is measured in 

epoch time.  Time is not used as a feature and is used for organizational purposes.  Packet 

length is a numerical feature that refers to the size of the entire 802.11 packet and is 

measured in bytes.  Data packet subtype is a categorical feature corresponding to the type 

of 802.11 data frame used.  Frames of subtype 32 are data frames, and are the basic frame 

type used in data transmission.  Frames of subtype 40 and 44 are quality-of-service (QoS) 

frames, which support latency-sensitive applications such as video and voice-over-IP [33].  

QoS data frames (subtype 40) contain higher-protocol data, and function similarly to the 

standard data frame type.  QoS null frames (subtype 44) are frames that transmit no data, 

but only frame information.  QoS null frames are typically used by STAs to notify the AP 
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that the STA is entering a power-save mode.  Source MAC addresses are extracted but are 

not used as features in classification.  These features are stored in the csv file of the source 

device.  All other 802.11 packet types and packets with a source address not in the list of 

device MAC addresses are not used for classification and are not stored in the csv files.   

Once all packets in the master pcap are parsed, the csv files are read into a dataframe 

created using pandas, an open-source library that provides high-performance structures for 

data analysis.  Each row in the dataframe represents a single 802.11 packet, and each 

column in the dataframe represents a feature.  The device type response class is added by 

mapping the source MAC address to a pre-built dictionary.  Derived features are then 

produced using existing features.  The vendor feature is produced by mapping the source 

MAC address to a vendor lookup application programming interface (API) from 

macvendors.co that returns the vendor name of the wireless chip as registered in the IEEE 

Standards Association [29][30].  Table 5 provides the complete list of Wi-Fi vendors.  The 

wireless chip used by a certain device is not necessarily tied to the vendor, therefore 

differences between the device vendor and chip vendor are possible.  For example, the Lifx 

light bulbs use wireless chips produced by Lifi.   

Table 5.  Wi-Fi Vendor List 

  Vendors 
1 Belkin 
2 Dropcam 
3 Lifi 
4 TP-Link 
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The associated packets feature is then extracted.  The associated packets feature is 

a numerical feature that refers to the number of packets of a given device sent within one 

second of each other, and is calculated using the transmission time feature.  Categorical 

features are one-hot encoded to allow for classification by algebraic classifiers (i.e., LDA).  

One-hot encoding transforms a single categorical feature with 𝑘𝑘 categories into 𝑘𝑘 features 

where binary values are used to represent inclusion in a given category.  Figure 26 provides 

an example using the data packet subtype feature.  In the example, three packets each have 

a different data packet subtype stored in the categorical feature DataSubtype.  Through 

one-hot encoding, the DataSubtype feature is transformed into three separate features, each 

corresponding to the three data subtypes.  For convenience during preprocessing, the 

device names as listed in Table 2 are added as a dataframe variable to easily identify the 

source of a given packet, and is not used for classification.   

 

 

Figure 26.  One-Hot Encoding 

Packets are assigned to either the training set or test set, based on their source 

device.  Packets belonging to devices in the training set are used to build the classifiers, 

and packets belonging to devices in the test set are used to evaluate the performance of the 

classifiers.  Table 7 provides the complete list of Wi-Fi device set assignments.  The camera 
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device type has three devices in the training set, the light bulb device type has two, and the 

plug device type has five devices.  The camera and plug device types each have two devices 

in the test set, while the light bulb device type has one.  Device availability is the primary 

reason for the dissimilarity in device count.   

Table 6 summarizes the dataframe columns produced in Wi-Fi preprocessing.  The 

name of the dataframe column is provided, along with its use (categorical feature, 

numerical feature, dataframe variable which is not used for classification but used for 

organizational purposes only, or response class), definition, and unit or accepted values.   

Table 6.  Wi-Fi Dataframe Columns 

 Attribute 
Name Definition Value Type/ ML 

Use Unit/Values 

1 Associated 
Packet Count 

Number of packets of a 
device sent within one 

second 
Numerical Feature Packets per 

second 

2 Device Name Name given to device by 
user Information See Table 2 

3 Device Type Category of device Response Class See Table 2 
4 Packet Length Size of 802.11 packet Numerical Feature Bytes 

5 Packet Subtype 802.11 data packet type Categorical 
Feature 

[Data, QoS 
data, QoS null] 

6 Set Assignment of device as 
training or test device Information See Table 7 

7 Source Address MAC address of source 
device Information See Table 2 

8 Time Time of packet 
transmission Information Epoch Time 

9 Vendor Vendor of wireless chip Categorical 
Feature See Table 5 
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Table 7.  Wi-Fi Device Set Assignment 

Device Type Training Set Test Set 

Camera 
Dropcam Kasa 
Netcam1 Netcam3 
Netcam2   

Light Bulb 
Lifx1 Lifx2 
TpBulb   

Plug 

Insight TpPlug 
Switch1 Switch4 
Switch2 

  Switch3 
Mini 

 

3.3.3.2 BLE Preprocessing 

BLE preprocessing is used to create a dataframe containing the device type 

response class, associated packet count feature, packet length feature, BLE link layer 

header length feature, protocol data unit (PDU) type feature, radio frequency (RF) channel 

number feature, device name, set, and packet time.   

Similar to Wi-Fi preprocessing, the BLE pcap files are combined into one master 

pcap file, and parsed using pyshark.  The link layer device names and advertising 

addresses are first extracted during parsing, but are not included as features.  Instead, they 

are used to identify which packets belong to the known devices in SHE.  A csv file is then 

created for each known BLE device.  The following information is extracted from each 

BLE packet belonging to a known device:  time, length, RF channel, link layer (LL) packet 

length, and PDU type.  Time refers to the time the packet was transmitted, and is measured 

in epoch time.  Time is not used as a feature and is used for organizational purposes.  Length 

refers to the size of the entire BLE packet, and is measured in bytes.  RF channel is a 
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categorical feature with values 0, 12, and 39, each corresponding to the radio frequency 

channel from which the packet was sniffed.  LL packet length refers to the length of the 

BLE link layer header, and is measured in bytes.  PDU type is a categorical feature with 

values corresponding to each advertising PDU type (see Section 2.3.2).  These features are 

then stored in the csv file of the source device.  All other BLE packet types and packets 

from unknown devices are not used for classification and are not stored in the csv files.  

Once all packets in the master pcap are parsed, the csv files are read into a pandas 

dataframe, with each row in the dataframe representing a single BLE packet, and each 

column in the dataframe representing a feature.  The device type response class is added 

by mapping either the LL device name or advertising address to a pre-built dictionary.  The 

associated packets feature is then derived using the same method described in Section 

3.3.3.1.  All categorical features are then one-hot encoded.  For convenience during 

preprocessing, the device names as listed in Table 3 are added in the dataframe to easily 

identify the source of a given packet, and are not used for classification.   

Packets are then assigned to either the training set or test set, based on their source 

device.  Packets belonging to devices in the training set are used to build the classifiers, 

and packets belonging to devices in the test set are used to evaluate the performance of the 

classifiers.  Table 8 provides the complete list of BLE device set assignments.  The door 

sensor and temperature sensor device type each have three devices in the training set, while 

the lock device types has two devices in the training set.  All device types have one device 

in the test set.  Device availability is the primary reason door sensors have an extra device.   
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Table 8.  BLE Device Set Assignments 

Device Type Training Set Test Set 

Door Sensor 
Home1 Door2 
Home2 

  Door1 

Temp Sensor 
Room1 Room2 
Push   
Weather  

Lock 
August1 August2 
Kevo   

 

Table 9 summarizes the dataframe columns produced in BLE preprocessing.  The 

name of the dataframe column is provided, along with its type (categorical feature, 

numerical feature, dataframe variable which is used for organizational purposes only, or 

response class), definition, and unit or accepted values.   
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Table 9.  BLE Dataframe Columns 

 Attribute Name Definition Value Type/ 
ML Use Unit/Values 

1 Associated Packet 
Count 

Number of packets of a 
device sent within one 

second 

Numerical 
Feature 

Packets per 
second 

2 Device Name Name given to device by 
user Information See Table 3 

3 Device Type Category of device Response 
Class See Table 3 

4 Link Layer Header 
Length Length of BLE link layer Numerical 

Feature Bytes 

5 Packet Length Size of BLE packet Numerical 
Feature Byte 

6 PDU Type Advertising PDU Type Categorical 
Feature See Table 1 

7 RF Channel RF Channel on which 
packet was sent 

Categorical 
Feature [0, 12, 39] 

8 Set Assignment of device as 
training or test device Information See Table 8 

9 Time Time of packet transmission Information Epoch Time 
 

3.3.4 Model Tuning 

Model tuning uses the preprocessed datasets to find the classifier hyperparameters 

with the best performance during cross-validation.  The optimal hyperparameters are then 

used to create classifier models for model testing.  The classification algorithms used are 

implemented by scikit-learn version 0.20, an open-source machine learning package 

written in Python [36].   

Models for the BLE and Wi-Fi datasets are tuned separately, however the tuning 

strategy for both protocols is identical.  A range of possible hyperparameter values is 

selected and evaluated using 10-fold cross-validation grid search, an exhaustive search that 

evaluates each model using all hyperparameter values.  The scoring metric used to evaluate 
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the models is the Matthews correlation coefficient (MCC) (see Section 4.4).  The MCC 

metric provides a measure of a classifier’s overall classification performance.  The MCC 

metric exists in the range [−1, 1], where −1 represents perfect misclassification and 1 

represents perfect classification.  The MCC metric is chosen over the traditionally used 

accuracy metric because accuracy provides misleading information in imbalanced datasets, 

such as this one.  MCC not only accounts for class imbalances, but also provides a 

convenient range of values to evaluate classifier performance.   

Table 10 provides the complete list of the hyperparameters considered during 

tuning.  The KNN hyperparameter, n_neighbors, determines the number of neighbors 

KNN considers in its classification of a given observation.  The values used are the odd 

numbers in the range 1 to 19.  Larger values are originally tested but required significant 

times to complete.  The value range 1 to 19 provides a reasonable tuning range without 

increasing computation costs significantly.  Two RF hyperparameters are tuned: 

max_features and n_estimators.  The max_features hyperparameter determines the 

size of random subsets of features RF considers when splitting a node [36].  The values 

used are 2, 3, 5, 7, and 9 for Wi-Fi tuning and 2, 4, 7, 9, and 12 for BLE tuning.  These 

values are chosen because they are evenly-spaced integers that do not exceed the total 

number of features used, which is 9 features for Wi-Fi tuning and 12 features for BLE 

tuning.  The n_estimators hyperparameter determines the number of decision tree the RF 

model builds.  The values used are 10, 15, 20, and 25 for both BLE and Wi-Fi tuning.  

While other hyperparameters are available, the tuning process is limited to these 
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hyperparameters to allow for efficiency and speed, as increasing the number of 

hyperparameters compounds the amount of time needed for tuning.   

No hyperparameter tuning is necessary for the LDA classifier.  However, unlike 

the KNN and RF classifiers which are able to inherently handle imbalanced multi-

classification tasks, the LDA classifier requires additional information.  Because of the 

class imbalances in the test dataset, the class prior probabilities are required by the LDA 

classifier.  The class prior probabilities for the Wi-Fi dataset are 61.68%, 37.82%, and 

0.51% for the plug, camera, and bulb device types respectively.  The class prior 

probabilities for the BLE dataset are 59.06%, 23.40%, and 17.54% for the door sensor, 

temperature sensor, and lock device types respectively.   

Table 10.  Hyperparameters used in Grid Search 

 Hyperparameter Name Grid Values 
KNN N_neighbors [1 3 5 7 9 11 13 15 17] 

RF (Wi-Fi) Max_features [ 2  3  5  7 9] 
RF (BLE) Max_features [ 2  4  7 9 12] 
RF (All) N_estimators [10 15 20 25] 

 

Hyperparameter tuning is performed using a Jupyter notebook written in Python 

(see Appendix B) [37].  For both Wi-Fi and BLE datasets, the script preprocesses the data 

and tunes an untuned KNN and RF classifier using the hyperparameter values in Table 10.  

When finished, the script reports the hyperparameter values that produced the best 

performing classifiers.  Table 11 provides the results of the cross-validation 

hyperparameter tuning process.  The hyperparameters that performed best on the Wi-Fi 

dataset are presented in the left side of the table, while the hyperparameters for the BLE 
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dataset are presented in the right.  Both Wi-Fi classifiers achieved an MCC of over 0.75, 

showing that when tuned to these hyperparameters, the classifiers successfully attain a high 

level of performance.  As for the BLE classifiers, both the KNN and RF classifiers also 

reach a high level of performance on the MCC metric.  The hyperparameter values used 

show no signs of improvement past the range of values used, and so it is concluded that 

these hyperparameter values are used for experimental testing.   

Table 11.  Best-Performing Hyperparameters 

 Wi-Fi BLE 
 Hyperparameter Values MCC Hyperparameter 

Values MCC 

KNN N_neighbors = 11 0.961 N_neighbors = 5 0.960 

RF 
Max_features = 2 0.975 Max_features = 7 0.961 
N_estimators = 20 N_estimators = 20 

 

3.4 Data Exploration 

Data exploration is performed to gain an initial understanding of the original dataset 

before any classification is performed.  Data exploration can provide valuable insights in 

classification.  The datasets used in data exploration are the original preprocessed datasets.  

All graphs in this section are organized similarly.  The x-axis is the device type, divided 

into separate bins.  Bin range values are chosen to highlight significant properties in the 

data.  The y-axis, expressed in powers of 10, is the count of packets that belong to each 

corresponding bin. 
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3.4.1 BLE Data Exploration 

The BLE dataset is comprised of six features: packet length, BLE link layer header 

length, associated packet count, radio frequency (RF) channel number, and protocol data 

unit (PDU) type.   

Figure 27 shows the packet length feature, measured in bytes, across the BLE 

device types.  The figure is organized into four bins: 20 to 40 bytes, 40 to 60 bytes, 60 to 

80 bytes, and 80 to 100 bytes.  One immediate insight can be observed: if a BLE packet 

length is greater than 80 bytes, it must be a lock device because it is the only device with 

packet lengths greater than 80 bytes.  No other significant insights are easily discernable.   

 

Figure 27.  BLE Packet Length 

Figure 28 shows the BLE link layer header length feature, measured in bytes, across 

the BLE device types.  The figure is organized into three bins: 3 bytes to 100 bytes, 100 

bytes to 150 bytes, and 150 bytes to 250 bytes.  BLE link layer header length appears to be 

equally distributed across device types.  No significant insights are easily discernable.   
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Figure 28.  BLE Link Layer Header Length 

Figure 29 shows the associated packet count feature, measured in packets per 

second, across the BLE device types, and is organized into three bins: 0 to 20, 20 to 40, 

and 40 to 60.  BLE associated packet count appears to have some observable patterns.  If a 

packet has an associated packet count of over 40 packets/sec, it must be a door sensor 

device.  Furthermore, associated packet counts of 20 to 40 packets/sec are heavily 

associated with lock devices.   
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Figure 29.  BLE Associated Packet Count 

Figure 30 shows the RF channel number feature across the BLE device types, and 

is composed of three categories: channel 0, channel 12, and channel 39.  The BLE RF 

channel feature appears to be equally distributed across device types.  No significant 

insights are easily discernable.   

 

Figure 30.  BLE RF Channels 
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Figure 31 shows the PDU type feature across the BLE device types and is composed 

of seven categories (see section 2.3.2).  BLE PDU type appears to have one significant 

pattern.  Three PDU types, scan requests (SCAN_REQ), advertising direct indications 

(ADV_DIRECT_IND), and connection requests (CONNECT_REQ) are only used by door 

devices.  Temperature sensor and lock devices share PDU types and are similar in 

distribution.   

To summarize BLE data exploration, the packet length, associated packet count, 

and PDU type features are observed to have clear classification value.  If the packet length 

is greater than 80 bytes, the packet belongs to a lock device.  If the associated packet count 

is greater than 40, the packet belongs to a door sensor device.  If a packet uses one of three 

certain PDU types, the packet belongs to a door sensor.  The BLE link layer header length 

and RF channel number features appear to be similarly distributed across the three device 

types.  

 

Figure 31.  BLE PDU Types 
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3.4.2 Wi-Fi Data Exploration 

The Wi-Fi dataset is comprised of four features: packet length, vendor, associated 

packet count, and packet subtype.    

Figure 32 shows the packet length feature, measured in bytes, across the Wi-Fi 

device types.  The figure is organized into three bins: 25 to 100 bytes, 100 to 500 bytes, 

and 500 to 1550 bytes.  It can be observed that only camera devices have packets over 500 

bytes.  Additionally, plug and camera devices tends to use smaller packets, while bulb 

devices tend to use larger packets.   

Figure 33 shows the vendor feature across the Wi-Fi device types, and is composed 

of six categories (see Table 5).  The Wi-Fi vendor feature appears to have observable traits 

that can be used in classification.  TP-link is the only vendor that produces all three device 

types.  Belkin produces both plug and camera devices, but not bulbs.  Lifi and Dropcam 

both only produce one device type each.  The vendor feature may prove to be a powerful 

feature that can be leveraged by the classifiers.   
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Figure 32.  Wi-Fi Packet Length 

 

Figure 33.  Wi-Fi Vendors 

Figure 34 shows the associated packet count length feature, measured in packets 

per second, across the Wi-Fi device types, and is organized into three bins: 0 to 30 

packets/sec, 30 to 100 packets/sec, and 100 to 200 packets/sec.  Wi-Fi associated packet 

count appears to have some observable patterns.  Only bulb devices have packets with an 
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associated packet count over 100 packets/sec.  Furthermore, between plug and camera 

devices, only camera devices have associated packet count of 30 to 100 packets/sec.  

Similar to the vendor feature, the Wi-Fi associated packet count appears to be a feature 

with classifying potential.   

Figure 35 shows the packet subtype feature across the Wi-Fi device types, and is 

composed of three categories: data, quality-of-service (QoS) data, and QoS null.  One clear 

observation can be made: bulbs do not use QoS null packets.  Plug and camera devices 

appear to share similar packet subtype distributions.   

 

 

Figure 34.  Wi-Fi Associated Packet Count 
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Figure 35.  Wi-Fi Packet Subtype 

To summarize Wi-Fi data exploration, all features are observed to have 

classification value.  If the packet length is greater than 500 bytes, the packet belongs to a 

camera device.  If the vendor is Belkin, the packet belongs to either a plug or camera device.  

If the vendor is Lifi, the packet belongs to a bulb device.  If the vendor is Dropcam, the 

packet belongs to a camera device.  If the associated packet count is greater than 100, the 

packet belongs to a bulb device.  Lastly, if the packet is of the QoS null subtype, the packet 

does not belong to a bulb device. 

3.5 Design Summary 

This chapter describes each component of SHE and DCP.  Their design enables the 

use of authentic smart device wireless traffic in the classification of IoT devices.  This 

chapter also explores the features of the datasets, looking for patterns that may be useful in 

gaining an understanding of the classification task.   

  



 

69 

IV. Methodology 

4.1  Problem/Objective 

The goal of this experiment is to evaluate the effectiveness of machine learning 

classifiers at identifying IoT devices using wirelessly collected traffic.  The experiment 

discussed in this section evaluates these classifiers using a set of performance metrics.  The 

experiment attempts to complete three objectives: 

1. Determine the ability of a classifier to classify a given packet to a device type. 

2. Measure the performance of a classifier in identifying the device types of a smart 

home environment.   

3. Determine which features are most useful for classification.  

4.2 System under Test 

The system under test (SUT) diagram is shown in Figure 36.  The system under test 

are the tuned classifiers.  Within the SUT are the three components under test: the KNN, 

LDA and RF classifiers.  The response variables and metrics used to evaluate the 

classifiers’ performance include the confusion matrix, feature importance score, Matthews 

correlation coefficient, mean precision, and mean recall, and are described in Sections 4.3 

and 4.4.  Controlled variables are discussed in Section 4.5.  The collected BLE and Wi-Fi 

traffic are considered uncontrolled and are analyzed in Section 4.6.  The parameters are 

variables that remain unchanged throughout the experiment and are studied in Section 4.7.  

The experimental factors are the variables that change between experimental trials, and are 

discussed in Section 4.8.   
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Figure 36.  System under test diagram 

4.2.1 Assumptions 

The following assumptions are made throughout the design and execution of the 

experiments of the SUT: 

1. The activities done by the devices in the smart home characterize a real-life 

smart home environment. 

2. Each device in the test setup is unique, and the sniffer is not misrepresenting 

any collected data.  

3. The sniffer has necessary network knowledge to collect wireless traffic, to 

include access point MAC address, access point channel, BLE device MAC 

addresses, and BLE device names. 

4. Devices in a test setup are not interfering with each other in any significant 

manner. 

5. Outside noise is negligible. 

6. Devices do not apply additional security mechanisms. 

4.3 Response Variables 

Response variables are the direct outputs of the experiment, and are used to 

calculate the metrics.  The objectives of the experiment motivate the response variables 

selected to assess the performance of the classifiers.  The confusion matrix response 
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variables are produced by each combination of device type and algorithm, for a total of 

nine configurations per wireless protocol.  The feature importance score is produced by the 

random forest classifier, and is reported once per trial.  All response variables are 

numerical.  Table 12 provides a summary of each response variable. 

• Objective 1: Determine the ability of each classifier to classify a given packet to a 

device type.  The variables listed below are collectively referred to as the confusion 

matrix response variables because they are derived from the confusion matrix.   

o True Positives (TP): The TP response variable measures the number of true 

positives, or packets that are correctly classified to a device type. 

o False Positives (FP): The FP response variable measures the number of 

false positives, or packets that are incorrectly classified as a device type. 

o False Negatives (FN): The FN response variable measures the number of 

false negatives, or packets that are incorrectly not classified as a device type. 

The TP, FP, and FN variables are presented using the confusion matrix.  The 

confusion matrix is a square matrix with an equal number of row and columns, where a 

row of the matrix represents the instances in an actual class, and a column represents the 

instance in a predicted class.  Figure 37 shows a 𝑘𝑘 𝑥𝑥 𝑘𝑘 confusion matrix, where 𝑘𝑘 is the 

number of classes (in this case, three), 𝑁𝑁 is the total number of instances, and 𝑐𝑐𝑖𝑖𝑖𝑖 is the 

number of instances with a true label of 𝑖𝑖 classified into class 𝑗𝑗.  The total predicted count 

for class 𝑥𝑥 is given by 𝑐𝑐∙𝑥𝑥, while the total actual count for class 𝑥𝑥 is given by summing the 

values along the column 𝑐𝑐𝑥𝑥∙.  The TP count for class 𝑥𝑥, 𝑇𝑇𝑃𝑃𝑥𝑥, is given by the value at 𝑐𝑐𝑥𝑥𝑥𝑥.  It 

can be observed that all class TP counts are found along the diagonal of the confusion 
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matrix.  The FP count for class 𝑥𝑥, 𝐹𝐹𝑃𝑃𝑥𝑥,  is calculated by 𝑐𝑐∙𝑥𝑥 − 𝑇𝑇𝑃𝑃𝑥𝑥.  The FN count for class 

𝑥𝑥, 𝐹𝐹𝑁𝑁𝑥𝑥,  is calculated by 𝑐𝑐𝑥𝑥∙ − 𝑇𝑇𝑃𝑃𝑥𝑥. 

 

Figure 37.  A 𝒌𝒌 𝒙𝒙 𝒌𝒌 Confusion Matrix (𝒌𝒌 = 𝟑𝟑) 

• Objective 2: Measure the importance of features in classification using the random 

forests classifier.  

o Feature Importance Score: The feature importance score measures how 

significant a feature is in the classification model.  The random forest 

classifier, as implemented by scikit-learn, reports the feature importance 

with values ranging from 0 to 1, where higher values correspond to higher 

feature importance.  The sum of feature importance scores is 1. 
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Table 12.  Response Variables 

Name Source/Formula Definition 

TP Count for a class found at the diagonal 
of the confusion matrix Correctly classified packet 

FP �𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝑖𝑖𝑐𝑐𝑃𝑃𝑃𝑃𝑑𝑑 −  𝑇𝑇𝑃𝑃 Packets that were incorrectly 
classified as a particular class 

FN �𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴𝑐𝑐𝑃𝑃𝐴𝐴𝐶𝐶𝐶𝐶 −  𝑇𝑇𝑃𝑃 Packets that were incorrectly not 
classified as a particular class 

Feature 
Importance Derived from random forests classifiers Measure of a given feature’s 

usefulness in classification 

 

4.4 Performance Metrics 

The performance of the classifiers is measured using three metrics: the Matthews 

correlation coefficient, mean recall, and mean precision.  These performance metrics are 

calculated using functions from the scikit-learn metrics module.   

4.4.1 Matthews Correlation Coefficient (MCC) 

The MCC metric provides a measure of a classifier’s overall classification 

performance using the confusion matrix.  Traditionally used as a binary classification 

metric, the MCC has been successfully extended to multi-classification tasks [38] [39].  

Functionally, the MCC metric is chosen over the popularly used accuracy metric because 

accuracy misrepresents classifier performance in imbalanced datasets.  If instances from 

the majority class significantly outnumber minority classes, a classifier can potentially 

report high accuracy scores simply by selecting the majority class for all instances.  MCC 

does not suffer from this type of misrepresentation.  MCC not only accounts for class 

imbalances, but also provides a convenient range of values to evaluate classifier 

performance.  The MCC metric exists in the range [−1, 1], where −1 represents perfect 

misclassification and 1 represents perfect classification.  A MCC value of 0 is calculated 
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for confusion matrices that performed random classification.  The MCC metric is 

calculated in this research using the sklearn.metrics matthews_corrcoef function.  

The MCC can be calculated formally using  

𝑀𝑀𝐶𝐶𝐶𝐶 =  𝑁𝑁 𝑇𝑇𝑇𝑇(𝐶𝐶)− ∑ 𝐶𝐶𝑘𝑘𝐶𝐶𝑙𝑙𝑘𝑘𝑙𝑙

�𝑁𝑁2− ∑ 𝐶𝐶𝑘𝑘(𝐶𝐶𝑇𝑇)𝑙𝑙𝑘𝑘𝑙𝑙 �𝑁𝑁2− ∑ (𝐶𝐶𝑇𝑇)𝑘𝑘𝐶𝐶𝑙𝑙𝑘𝑘𝑙𝑙
                                    (2) 

where 𝑁𝑁 is the total number of instances in the confusion matrix 𝐶𝐶, 𝑇𝑇𝑃𝑃(𝐶𝐶) is the trace or 

sum of the confusion matrix diagonal, 𝐶𝐶𝑘𝑘 is the 𝑘𝑘th row of 𝐶𝐶, 𝐶𝐶𝑙𝑙 is the 𝐶𝐶th column of 𝐶𝐶, 

and 𝐶𝐶𝑇𝑇 is 𝐶𝐶 transposed [39].   

4.4.2 Mean Precision 

The mean precision metric provides a measure of the overall positive predictive 

power of a classifier by calculating the mean precision metric over all classes.  Precision 

is calculated using  

𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑖𝑖𝐶𝐶𝑖𝑖𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇 

 × 100                                                   (3) 

where TP represents the true positive count and FP represents the false positive count.  A 

classifier with high precision provides high confidence that a positive prediction is a correct 

prediction.  The mean precision metric is calculated in this research using the 

sklearn.metrics precision_score function with macro-averaging, while individual 

class precision metrics are calculated using the precision_score function without 

averaging.   

4.4.3 Mean Recall 

The mean recall metric provides a measure of the overall success of a classifier as 

tested on an imbalanced dataset by calculating the mean recall over all classes.  The recall 
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metric measures the rate at which a classifier correctly identifies a given device type.  

Recall is calculated using  

𝑅𝑅𝑃𝑃𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁 

 × 100                                                      (4) 

where TP represents the true positive count and FN represents the false negative count.  A 

classifier with high recall rarely overlooks an actual positive, giving high confidence that 

the classifier can identify a complete set of actual positives.  Mean recall is also known as 

balanced accuracy, and recall is also known as sensitivity or true positive rate.  The mean 

recall metric is calculated in this research using the sklearn.metrics 

balanced_accuracy_score function, while individual class recall metrics are calculated 

using the recall_score function.   

4.4.4 High Performance 

Classifiers are evaluated on their performance using the MCC, mean recall, and 

mean precision metrics.  Table 13 provides a summary of the performance metrics, 

including the units, accepted range, and performance threshold values of each metric.  

Performance threshold values specify the values necessary for a metric to be considered 

high or low performance, and are derived from hypothesized classifier performance.  A 

classifier that performs worse than random chance is considered a low performance 

classifier.  As such, the low performance threshold values reflect those expected from a 

random chance classifier.  The chosen high performance threshold values indicate 

performance that is significantly better than random chance, and would reflect a classifier 

with high classification performance.   
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Table 13.  Performance Metrics 

Metric Units Range High Performance 
Threshold 

Low Performance 
Threshold 

MCC -- -1 to 1 ≥ 0.50 < 0.0 
Mean Recall % 0 to 100 ≥ 75% < 50% 

Mean Precision % 0 to 100 ≥ 75% < 50% 
 

4.5 Control Variables 

The following variables are controlled in each trial to provide the classifiers 

sufficient information.  

• Classifier Hyperparameters: Each classifier has certain hyperparameters that may 

be adjusted to improve performance.  A range of tuning hyperparameters are 

evaluated by DCP to produce the best-performing classifiers.  Tuned classifiers are 

used for the multiclass full-featured classification task, but not used for all other 

trials.  

• Source of Motion: Various devices in the smart home environment rely on motion 

detection to initiate actions.  A controlled source of motion is needed to consistently 

initiate device actions.  An Arduino Uno microcontroller is programmed to activate 

a stepper motor every fifteen minutes.  The stepper motor rotates an eight-inch rod 

with a two-inch-wide paper flap attached to it.  The entire apparatus resembles a 

one-armed windmill, and its appearance and location in SHE is shown in Figure 38.  

4.6 Uncontrolled Variables 

The experiment assumes a realistic smart home environment.  Therefore, the 

collected BLE and Wi-Fi traffic cannot be controlled.  The use of commercial devices and 
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an open wireless environment presents potential issues with outside noise and 

accompanying unintended effects.  Nevertheless, no significant noise is experienced 

throughout data collection and experimentation.   

4.7 Parameters 

The experiment is performed under a number of parameters to replicate a realistic 

smart home environment.  Minimizing external factors is critical in achieving this.  The 

parameters in this experiment include: 

• Location of Devices: Each device is placed in the same location in the testing 

environment at the time of sniffing. 

• Location of Sniffers: Each sniffer is placed in the same location in the testing 

environment at the time of sniffing. 

• Number of Devices: The number of devices does not change. 

• Type of Devices: The types of devices present in each test setup does not change. 

• Sniffing Equipment: The same sniffing equipment is used to collect wireless 

packets.  This includes antennas, wireless dongles, and software tools.  This limits 

the amount of instrumentation noise that could be introduced by the equipment. 

• Computing Environment: The computing environment that performs the 

classification is kept constant.  This includes operating system, system resources, 

programming languages, and hardware.   
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Figure 38.  Motion Source Appearance (left) and Location in SHE (right) 
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4.8 Factors 

The experiment factors are the changes done between experimental trials.  The 

experiment uses two factors in evaluating the classifiers’ performance: classification task 

and selected features. 

The classification task factor refers to the number of response classes (i.e., device 

types) being classified.  Two classification tasks are used in the experiment: multiclass and 

binary.  Multiclass classification is performed to classify all given device types in the 

wireless protocol, while binary classification only classifies between two device types.  

Multiclass classification is the primary focus of the experiment as it provides the most 

realistic classification value.  Binary classification is completed for classification analysis 

purposes, especially when classifiers are having difficulties distinguishing between two 

given device types.   

The selected features factor refers to the number of features employed in the 

classification process (see Table 6 and Table 9 for the full list of Wi-Fi and BLE features, 

respectively).  Two feature configurations are used in this experiment: full-featured and 

best-features.  Full-featured multiclass classification uses all available features for the 

given protocol to classify devices into their respective device types.  The tuned models 

with optimal hyperparameters are used in this task because the tuning process applies all 

features.  The best-features multiclass classification uses only the k best-performing 

features from full-featured multiclass classification, where k is an integer no greater than 

the total of all available features.  The use of a small subset of relevant features frequently 

results in improved performance because of the removal of noisy and redundant features 
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that confuse the classifiers [40].  In this experiment, k is set to 3 in order to standardize the 

evaluation of both BLE and Wi-Fi classifiers.   

4.9 Experimental Design 

The experiment proceeds in three stages: data collection, model tuning, and model 

testing.  The complete list of steps needed to perform the experiment is provided in 

Appendix C.  SHE devices are set up and allowed to reach a steady state for one day.  Data 

collection for the BLE and Wi-Fi devices then occurs over a period of three days.  Wireless 

packet sniffing is performed for eight hours for each data collection day.  Once data 

collection is complete, two Jupyter notebooks running DCP, one each for BLE and Wi-Fi, 

are used to clean and process data, extract features, and perform model tuning.  Once model 

tuning is complete, the classifiers are updated to use the best-performing hyperparameter 

values.  The test dataset is adjusted using down-sampling to maintain a uniform distribution 

of packets across all device types.  Random down-sampling selects data points at random 

and removes them from the dataset, ensuring that all device types have an equal number of 

packets in the test dataset.  

Model testing is done using a Jupyter notebook written in Python, one each for BLE 

and Wi-Fi (see Appendix D and E).  The models are evaluated on two classification tasks: 

full-featured multiclass classification and best-features classification.  The full set of 

features is used to evaluate the overall classification performance of the machine learning 

classifiers, while best-features classification is used to check if performance can be 

improved by removing irrelevant features.  Using the random forests feature importance 

scores, the three most important features are selected and used to retrain and retest the 
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KNN, RF, and LDA classifiers.  By reducing the number of features, feature confusion can 

be minimized.  Response variables and performance metrics are extracted, and are stored 

in csv files.  Evaluating the performance of the classifiers on the test set is the primary 

focus of Chapter 5.   

4.10 Methodology Summary 

This chapter provides the experimentation methodology used to evaluate the 

performance of the classifiers through the confusion matrix and feature importance 

response variables, and the Matthews correlation coefficient, mean recall, and mean 

precision metrics.  
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V. Results and Analysis 

5.1 Overview 

This chapter provides the results obtained from the experimentation described in 

Chapter 4.  Classifier performance is evaluated using MCC, mean recall, and mean 

precision performance metrics.  When needed, further analysis is completed using the 

confusion matrix results and feature importance scores.  Classifiers are evaluated on their 

performance in the full-featured multiclass classification task where all available features 

are used in classification, and then in the best-features multiclass classification task where 

only the most relevant features are used, as determined by feature importance scores.  

Lastly, classification analysis is completed to discuss notable behavior by the classifiers.  

Sections 5.2 and 5.3 examine the classifiers’ performance in the BLE and Wi-Fi datasets 

respectively.    

5.2 BLE Classifier Performance 

The classification task for BLE classifiers is categorizing a BLE packets into one 

of three device types: door sensor, lock, or temperature sensor.  Results are calculated using 

the Jupyter notebook in Appendix D.   

5.2.1 BLE Full-featured Classification 

This section examines the performance of the classifiers when the full set of 

available features are used, otherwise known as full-featured classification.  Figure 39 and 

Table 14 provide the confusion matrices and overall performance metrics of the BLE 

classifiers for full-featured classification.  The MCC metric provides a measure of a 

classifier’s overall classification performance using the confusion matrix, where -1 
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indicates perfect misclassification and 1 indicates perfect classification.  The KNN 

classifier achieves the best overall performance with an MCC of 0.55, a mean precision of 

54%, and a mean recall of 64%.  The RF classifier attains an MCC of 0.00, indicating that 

its performance is comparable to random chance, while the LDA classifier achieves a 

negative MCC value, revealing its poor value as a classifier.  Out of all classifiers, only the 

KNN classifier’s MCC metric succeeds in exceeding the high performance threshold.  

Table 14.  Classifier Performance in BLE Full-Featured Classification 

 MCC Mean Precision Mean Recall 
KNN 0.55 54.1% 64.0% 
RF 0.00 17.1% 33.5% 

LDA -0.61 0.0% 0.0% 
 

The precision metric measures the positive predictive power of the classifiers.  A 

classifier with high precision provides high confidence that a positive prediction is a correct 

prediction.  Table 15 provides the precision scores for all BLE device types on the full-

featured classification task.  While KNN achieves a perfect precision score on lock devices, 

it performs poorly on the door sensor and temperature sensor devices.  This mixed 

performance explains KNN’s low mean precision score.  As expected from their low mean 

precision scores, the RF and LDA classifiers achieve poor individual precision scores, with 

the LDA classifier managing to score 0.0% precision for all device types.
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Figure 39.  Confusion Matrices from BLE Full-Featured Classification 
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Table 15.  Device Type Precision in BLE Full-Featured Classification 

 Door Sensor Lock Temp Sensor 
KNN 12.3% 100.0% 50.0% 
RF 1.1% 0.0% 50.1% 

LDA 0.0% 0.0% 0.0% 
Mean 4.5% 33.3% 33.4% 

 

The recall performance metric measures the completeness of the classifiers.  A 

classifier with high recall provides high confidence that a complete set of actual positives 

is found.  Table 16 provides the recall scores for all BLE device types on the full-featured 

classification task.  KNN again achieves the best performance, with excellent scores on 

two device types.  Given their recall scores, high confidence can be placed that KNN can 

successfully identify the majority of lock and temperature sensor devices.  However, 

KNN’s performance is severely diminished by the poor recall score of 1.3% on the door 

devices.  The RF classifier manages an outstanding 99.3% recall score on the temperature 

sensor devices, but scored poorly on the other two device types.  The LDA classifier 

continues its low performance with a 0.0% recall score for all device types.   

Table 16.  Classifier Recall in BLE Full-Featured Classification 

 Door Sensor Lock Temp Sensor 
KNN 1.3% 92.0% 98.8% 
RF 1.1% 0.0% 99.3% 

LDA 0.0% 0.0% 0.0% 
Mean 0.8% 30.7% 66.0% 

 

The feature importance score measures the significance of a feature in 

classification.  Feature importance scores range from 0 to 1.0, where higher values indicate 
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more important features.  Feature importance is reported from the random forest classifier.  

It is important to note that the random forests classifier is only performing at chance, with 

an MCC value of 0.00.  Therefore it cannot be assumed that the reported feature importance 

scores are meaningful.  Nevertheless, their scores are reported here for completeness.  

Table 17 provides the feature importance scores obtained from full-featured classification.  

Out of the twelve available features, seven report nonzero feature importance scores.  

Packet length, BLE link layer header length, and associated packet count are observed as 

the three most important features, and combined account for over two-thirds of the feature 

importance.  This indicates that a majority of the random forest classifier’s decision-

making rely on these three features.  Five features report a feature importance score of 

0.000, signifying that the random forest classifier does not benefit from these features.  It 

is interesting to note that the top three features are numerical features and the features with 

scores of 0.000 are categorical features.  A possible explanation is that because categorical 

features are one-hot encoded, the value of their information is spread across multiple 

individual features.  For example, the PDU type feature is one-hot encoded to six binary 

features.  Therefore, the feature importance of the PDU type feature is divided into six 

separate feature importance scores.  As such, numerical features tend to report high 

importance scores because categorical scores are spread out.   
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Table 17.  Feature Importance in BLE Full-Featured Classification 

 Feature Score 
1 Packet Length 0.327 
2 BLE LL Length 0.212 
3 Associated Packet Count 0.193 
4 SCAN_RSP PDU Type 0.135 
5 ADV_IND PDU Type 0.106 
6 SCAN_REQ PDU Type 0.026 
7 Channel 39 0.001 
8 ADV_DIRECT_IND PDU Type 0.000 
9 ADV_NONCONN_IND PDU Type 0.000 
10 CONNECT_REQ PDU Type 0.000 
11 Channel 0 0.000 
12 Channel 12 0.000 

 

5.2.2 BLE Best-Features Classification 

Best-features classification uses a small subset of features from the original feature 

set.  The use of a small subset of relevant features frequently results in improved 

performance because of the removal of noisy and redundant features that confuse the 

classifiers [40].  Best-features classification is performed after full-featured classification 

to take advantage of the feature importance scores obtained from full-featured 

classification.   

The three best features reported by BLE full-featured classification are the packet 

length, BLE link layer header length, and associated packet count features (see Table 17).  

The classifiers are retrained and retested using a dataset containing only these three features 

to execute best-features classification.  Table 18 provides the overall performance metrics 

of the BLE classifiers in best-features classification.  As hypothesized, the performance of 

the classifiers improves in best-features classification.  The KNN classifier experiences 
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minor improvement across all metrics, with a 0.02 points added to MCC, 3.7% added to 

mean precision, and 1.2% added to mean recall.  The RF classifier and LDA classifier both 

experienced significant improvements, with the RF classifier adding 0.57 points to its 

MCC, 36.2% added to mean precision, and 31.6% added to mean recall, and the LDA 

classifier adding 0.61 points to its MCC, 17.3% points to its mean precision, and 33.4% 

points to its mean recall.   

Table 18.  Classifier Performance in BLE Best-3 Feature Classification 

 MCC Mean Precision Mean Recall 
KNN 0.57 57.8% 65.2% 
RF 0.57 53.3% 65.1% 

LDA 0.00 17.3% 33.4% 
 

5.2.3 BLE Classification Analysis 

Classification analysis is performed to examine notable observations and offer 

explanations that caused them.  The key classification observation in the BLE dataset is 

the misclassification of door sensors as temperature sensors.  Figure 39 provides the 

confusion matrix results from BLE full-featured classification.  As described in Section 

4.3, the x-axis shows the predicted labels and the y-axis shows the true labels.  Cells with 

darker colors indicate a higher count of instances.  It is observed that both KNN and RF 

classifiers heavily misclassify door sensors as temperature sensors.  This misclassification 

directly contributes to the classifiers’ poor recall performances.  To understand this 

misclassification, a classification trial is prepared with only door sensors and temperature 

sensors.  The classification task is adjusted to a binary classification task between the two 

device types.  Table 19 and Figure 40 provide the respective overall performance metrics 
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and confusion matrix for this binary classification.  The overall performance metrics 

confirm that the classifiers cannot reliably distinguish between door sensors and 

temperature sensors.  All classifiers achieve MCC scores close to zero, indicating that their 

value as classifiers resembles that of random guessing.  Similarly, the mean recall scores 

are approximately 50%, signifying that the classifiers are only able to consistently discern 

a complete set of device types half the time.  The confusion matrix results imply that 

because the classifiers are not capable of finding a meaningful difference between the 

device types, the classifiers are reduced to a naïve strategy of categorizing the vast majority 

of instances into a single device type.  Considering the top three features, it becomes clear 

that there are no clear differences between door sensors and temperature sensors.  Door 

sensors and temperature sensors have nearly identical distributions for the packet length, 

BLE LL length, and associated packet count features, explaining why the classifiers 

experienced difficulty in separating the two device types (see Appendix E).   

Table 19.  Classifier Performance in BLE Door Sensors vs Temperature Sensors 

 MCC Mean Precision Mean Recall 
KNN -0.01 25.0% 50.0% 
RF 0.02 55.2% 50.2% 

LDA 0.03 59.4% 50.2% 
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Figure 40.  Confusion Matrices from BLE Door Sensors vs Temperature Sensors 
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5.3 Wi-Fi Classifier Performance 

The classification task for Wi-Fi classifiers is categorizing a given Wi-Fi packet 

into one of three device types: bulb, camera, or smart plug.  Results are calculated using 

the Jupyter notebook in Appendix E.   

5.3.1 Wi-Fi Full-featured Classification 

Figure 41 and Table 20 provide the confusion matrices and  the overall performance 

metrics of the Wi-Fi classifiers in full-featured classification.  Out of the three classifiers, 

two achieve MCC values above the high-performance threshold, indicating they have 

noteworthy classification value.  The KNN classifier attains the best overall performance 

with all metrics exceeding the high-performance threshold as mentioned in Section 4.4.4.  

The LDA classifier succeeds with a high-performance MCC, but fails to achieve high 

performance in its mean precision and mean recall scores.  The RF classifier fails to achieve 

any high performance metrics, but nevertheless manages respectable performance levels.   

Table 20.  Classifier Performance in Wi-Fi Full-Featured Classification 

 MCC Mean Precision Mean Recall 
KNN  0.71  81.1% 80.4% 
RF  0.74  85.4% 80.8% 

LDA  0.84  89.7% 89.2% 
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Figure 41.  Confusion Matrices from Wi-Fi Full-Featured Classification 
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Table 21 and Table 22 provide the precision and recall scores for all Wi-Fi device 

types respectively.  Out of the three device types, the KNN and RF classifiers achieve high 

precision scores on two device types, while the LDA classifier achieves high precision 

scores on all three device types.  Comparing between device types, the classifiers achieves 

the highest mean precision on the bulb devices, suggesting the classifiers are able to 

positively predict the bulb devices at a higher rate than the camera and plug devices.  The 

recall scores confirm this idea, as all three classifiers achieve high recall scores on the bulb 

device type.  Recall scores for all three classifiers on the plug device type also meet the 

high performance threshold, implying that Wi-Fi classifiers are able to successfully 

identify two out of the three device types.   

Table 21.  Device Type Precision in Wi-Fi Full-Featured Classification 

 Bulb Camera Plug 
KNN 100.0% 74.9% 68.3% 
RF 67.0% 95.9% 93.4% 

LDA 100.0% 79.3% 89.8% 
Mean 89.0% 83.4% 83.8% 

 

Table 22.  Device Type Recall in Wi-Fi Full-Featured Classification 

 Bulb Camera Plug 
KNN 96.7% 63.1% 81.3% 
RF 100.0% 64.0% 78.3% 

LDA 100.0% 91.4% 76.1% 
Mean 98.9% 72.8% 78.6% 

 

Table 23 provides the feature importance scores obtained from Wi-Fi full-featured 

classification.  Out of the ten available features, eight report nonzero feature importance 
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scores.  The Belkin vendor, associated packet count, and Dropcam vendor features are 

observed as the three most important features, and together account for over 90% of the 

feature importance.  This indicates that a majority of the random forest classifier’s 

decision-making depended on these three features.  One feature (Tp-Link) reports a feature 

importance score of 0.000, signifying that the random forest classifier does not benefit from 

this feature.   

Table 23.  Feature Importance in Wi-Fi Full-Featured Classification 

 Feature Score 
1 Belkin Vendor  0.531  
2 Associated Packet Count  0.283  
3 Dropcam Vendor  0.103  
4 Packet Length  0.035  
5 QoS_Null Packet Subtype  0.021  
6 QoS_Data Packet Subtype  0.015  
7 Data Packet Subtype  0.008  
8 Lifi Vendor  0.005  
9 Tp-link Vendor  0.000  

 

5.3.2 Wi-Fi Best-features Classification 

Similar to BLE classification, best-features classification is performed after full-

featured classification to benefit from the feature importance scores from full-featured 

classification.  It is hypothesized that the use of a reduced subset of relevant features results 

in improved classification performance.  

The three best features reported by Wi-Fi full-featured classification are the 

Dropcam vendor, Belkin vendor, and associated packet count features (see Table 23).  The 

classifiers are retrained and retested using a dataset containing only these three features to 
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execute best-features classification.  Table 24 provides the overall performance metrics of 

the Wi-Fi classifiers in best-features classification.  Best-features classification results in 

significant decline of performance for all classifiers.  The KNN classifier experiences a 

decline in performance across all metrics, with a 0.38 point reduction in MCC, 38.3% 

subtracted from mean precision, and 27.8% subtracted from mean recall.  The RF classifier 

also receives substantial decreases across all metrics, with a 0.24 point reduction in MCC, 

37.0% subtracted from mean precision, and 20.9% subtracted from mean recall.  Lastly, 

the LDA classifier receives significant losses in performance, with a 0.28 point reduction 

in MCC, 11.0% subtracted from mean precision, and 21.4% subtracted from mean recall. 

Table 24.  Classifier Performance in Wi-Fi Best-3 Feature Classification 

 MCC Mean Precision Mean Recall 
KNN  0.32  42.8% 52.5% 
RF  0.49  48.4% 59.9% 

LDA  0.56  78.7% 67.8% 
 

5.3.3 Wi-Fi Classification Analysis 

Wi-Fi classification analysis is performed to understand two notable observations: 

the misclassification of camera devices as plug devices and the reliance of the classifiers 

on vendor features. 

The first notable observation is the misclassification of cameras as plug devices.  

Figure 41 provides the confusion matrix results from Wi-Fi full-featured classification.  It 

is observed that all three classifiers misclassify cameras as plugs to varying degrees.  To 

understand this misclassification, a classification trial is prepared with only camera and 

plug device types in the training and test sets.  The classification task is adjusted to a binary 



 

96 

classification between the two device types.  Table 25 and Figure 42 provide the respective 

overall performance metrics and confusion matrix for the binary classification of cameras 

and plugs.  The overall performance metrics report a loss of performance across all 

classifiers.  Notably, the KNN classifier sees a 0.79 drop in its MCC score.  By contrast, 

the RF classifier’s performance experiences a lesser yet still significant decline, with the 

MCC dropping by 0.22 points.  The confusion matrix results suggest that the KNN and 

LDA classifiers classify the majority of packets as plug devices, while the RF classifier 

successfully separates the two device types.   

The random forest feature importance scores are then analyzed to understand which 

features the RF classifier uses to achieve this.  Table 26 provides the feature importance 

scores in the cameras versus plugs classification.  The best features are observed as the 

Belkin vendor, associated packet count, and Dropcam vendor features.  Interestingly, these 

are the same best features found by full-featured classification, except their importance 

order are switched around.  Looking into the feature distributions between cameras and 

plugs, it can be observed that while both device types have devices manufactured by 

Belkin, there are more Belkin plug devices than there are Belkin camera devices (see 

Appendix F).  Additionally, the camera device type has more instances of associated packet 

counts 1 to 4.  At this point, it is hypothesized that using the full set of available features 

adds noise to the classification, and that using only the best features would improve the 

performance of the KNN classifier, maintain the performance of the RF classifier, and 

diminish the performance of the LDA classifier.   
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Table 25.  Classifier Performance in Wi-Fi Cameras vs Plugs (Full-Featured 
Classification) 

 MCC Mean Precision Mean Recall 
KNN -0.08 45.1% 46.8% 
RF  0.51  75.6% 75.5% 

LDA 0.13 57.0% 55.9% 

 
Table 26.  Feature Importance in Wi-Fi Cameras vs Plugs (Full-Featured 

Classification) 

 Feature Score 
1 Belkin Vendor  0.455  
2 Dropcam Vendor  0.273  
3 Associated Packet Count  0.192  
4 QoS_Null Packet Subtype  0.027  
5 Packet Length  0.025  
6 Data Packet Subtype  0.024  
7 QoS_Null Packet Subtype 0.012 
8 Tp-Link Vendor 0.000 
9 Lifi Vendor 0.000 

 

The classification task is adjusted to use only the features with the best importance 

scores: Belkin vendor, Dropcam vendor, and associated packet count.  Table 27 provides 

the overall performance of the classifiers on the binary classification with best features.  

The classifier performances change as predicted.  The KNN classifier’s performance 

metrics are restored to decent values, with the MCC returning to a positive value, and the 

mean precision and mean recall scores returning to above 50%.  The RF classifier maintains 

its previous performance, while the LDA classifier experiences a slight drop in 

performance.   
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Table 27.  Classifier Performance in Wi-Fi Cameras vs Plugs (Best Features 

Classification) 

 MCC Mean Precision Mean Recall 
KNN  0.46  73.1% 72.7% 
RF  0.66  83.2% 83.0% 

LDA  0.05  61.5% 50.5% 
   

The second notable observation made from Wi-Fi classification is the reliance of 

the full-featured classification on certain vendor features (e.g., Dropcam, Belkin) but 

complete independence from the other vendor features (e.g., Lifi, Tp-Link).  A 

classification trial was performed to analyze how classifier performance is affected if no 

vendor features are used in the classification.  It was hypothesized that classifier 

performance would decline because of the absence of all vendor features, and that the 

associated packet count feature would be an important feature.  Table 28 and Figure 43 

provides the respective performance metrics and confusion matrix of the Wi-Fi 

classification with no vendor features.  As hypothesized, all classifiers experienced a 

decline in performance, as compared to the full-featured classification.  However, the 

degree to which the performance declined was unexpected.  The KNN and LDA classifiers 

suffered significant reductions in performance, with the KNN classifier experiencing a 

38% decrease in MCC, 31% decrease in mean precision, and 25% decrease in mean recall, 

and the LDA classifier experiencing an 82% decrease in MCC, 32% decrease in mean 

precision, and 44% decrease in mean recall.  The RF classifier experienced a minor drop 

in performance, with a 10% decrease in MCC, 13% decrease in mean precision, and 4% 

decrease in mean recall.   
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Table 28.  Classifier Performance in Wi-Fi Classification (No Vendor Features) 

 MCC Mean Precision Mean Recall 
KNN 0.44 55.8% 60.3% 
RF 0.43 57.4% 60.0% 

LDA 0.10 48.4% 39.6% 
 

The random forest feature importance scores were analyzed to understand which 

features the RF classifier found most significant.  Table 29 provides the feature importance 

scores in the cameras vs. plugs classification.  The associated packets count is observed as 

by far the most important feature, garnering over 90% of the feature importance.  This 

result suggests that the vendor features provide significant information, the classifiers are 

able to extract sufficient information from the associated packets count feature to achieve 

meaningful results. 

Table 29.  Feature Importance in Wi-Fi Classification (No Vendor Features) 

 Feature Score 
1 Associated Packet Count 0.918 
2 Packet Length 0.046 
3 QoS_Null Packet Subtype 0.014 
4 Data Packet Subtype 0.013 
5 QoS_Data Packet Subtype 0.009 
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Figure 42.  Confusion Matrices from Wi-Fi Cameras vs Plugs 

 

Figure 43.  Confusion Matrices from Wi-Fi Classification (No Vendor Features)
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5.4 Results Summary 

This section reviews the results of classification trials and analyzes the classifier 

performances on the BLE and Wi-Fi device type classification tasks.  Table 30 and Table 

31 summarize the classifiers performance on the classification tasks, showing which 

classifiers met the criteria for high performance and low performance.  Out of the BLE 

classifiers, only the KNN classifier managed to achieve a high performance in both the 

full-featured and best-features classification tasks, getting excellent MCC scores in both.  

Out of the Wi-Fi classifiers, KNN succeeded in achieved high performance across all 

metrics for the full-featured and no vendor features classification tasks.  The LDA classifier 

attained two high performance metrics in the best-feature classification task.   

Table 30.  High and Low Performance BLE Classifiers  
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Table 31.  High and Low Performance Wi-Fi Classifiers 
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VI. Conclusion 

6.1 Overview 

This chapter provides a summary of the research and results found during 

experimentation.  Section 6.2 reviews the conclusions taken from the experiment and 

results, while Section 6.3 offers a review of the research’s significance.  Finally, Section 

6.4 presents opportunities for future work in this research area.   

6.2 Research Conclusions 

The research goals that guide this thesis are successfully met through five 

contributions:  

1. Design and build a source of realistic smart home device traffic: 

designing and building SHE to produce real-life smart home wireless traffic 

2. Develop procedures to collect and prepare the wireless traffic for 

machine learning classification: developing DCP to collect and prepare 

wireless data for machine learning 

3. Evaluate the performance of the linear discriminant analysis (LDA), k-

nearest neighbors (KNN), and random forests (RF) machine learning 

classification algorithms in determining IoT device types: implementing 

and evaluating LDA, KNN, and RF classifier performances using 

experimental trials 

4. Determine which features are most useful for classification purposes: 

reporting feature importance scores used by RF classifiers in the experiment 
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5. Assess the suitability of machine learning towards the task of IoT 

device type classification: discussed below, with an assessment of the 

machine learning approach used in this research towards the task of IoT 

device type classification.   

The hypothesis presented in this research is if machine learning classifiers are 

trained using wireless traffic from a realistic smart home environment, then the classifiers 

can successfully identify the device type of IoT devices to a high degree of performance.  

This research provides mixed results towards answering this hypothesis.  A smart home 

environment was successfully created and used towards training machine learning 

classifiers.  However, the classifiers achieved moderate levels of performance on the BLE 

dataset and high levels of performances on the Wi-Fi dataset.  On average, the classifiers 

were able to identify BLE device types with an MCC of -0.02, a mean precision of 23.7%, 

and a mean recall of 32.5%, and Wi-Fi device types with an MCC of 0.76, a mean precision 

of 85.4%, and a mean recall of 83.4%.  Therefore, when viewed as a whole, the research 

results provide moderate support for the hypothesis.  However, individual classifiers 

managed to achieve higher levels of success.  In the BLE dataset, the KNN classifier 

achieved an MCC of 0.55, a mean precision of 54.1%, and a mean recall of 64%.  In the 

Wi-Fi dataset, the LDA classifier achieved an MCC of 0.84, a mean precision of 89.7%, 

and a mean recall of 83.4%.  While not shared by the RF and LDA classifiers, these 

individual moments of high performance suggest that machine learning can indeed be 

applied toward the task of IoT device classification, and therefore provides support for the 

research hypothesis.   
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6.3 Research Significance 

The research completed in this thesis offers relevant insights for machine learning 

and its applications in IoT cybersecurity.  This research presents the first, and at the time 

of this work, the only application of machine learning towards the task of IoT device type 

classification.  This research uses three different classification methods: linear 

transformation (LDA), decision trees (RF), and non-parametric methods (KNN).  The data 

exploration revealed certain wireless traffic patterns that may guide new research attempts 

in this area.  Lastly, while the research ultimately yielded mixed results, the methodology 

applied a straightforward approach that serves as a necessary stepping-stone for future 

efforts.   

6.4 Future Work 

There are several opportunities in extending this research area as there is currently 

a lack of research in the intersection of IoT device security and machine learning 

classification.  Five future work possibilities are offered below: 

1. Development of a sequential pattern-of-life tracking tool:  Smart device 

usage may indicate a subject’s location within an area, providing 

information on the subject’s pattern-of-life.  By applying the techniques 

used in this research, it may be possible to develop a classifier that can 

sequentially track a subject’s actions and movements and create a log of the 

subject’s activities.  

2. Expansion of devices in the smart home environment.  The number, 

device type, wireless protocol, model, and manufacturer of devices in the 
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smart home environment can be expanded to produce a training set that 

includes a more robust selection of IoT devices currently in use in the 

market today.  The inclusion of more devices with a single manufacturer 

but with varying device types is a particularly interesting idea as only a 

limited number of these devices were used in this research.   

3. Scalability to multiple smart home environments.  Attempts to deploy 

this research in a scalable matter could involve expanding the smart home 

environment to several environments.  The classifiers were trained using a 

dataset limited to a single home environment with an individual user.  The 

dataset can be expanded to include multiple home environments with 

multiple users.  Doing so would introduce a larger variety of smart device 

usage patterns that may reduce bias in the dataset due to only having a single 

user.  Care must be taken in first developing a big data system that can 

handle the substantial volume of wireless traffic data produced by multiple 

smart home environments.  

4. Feature extraction.  Features can be obtained across different levels in the 

data.  BLE and Wi-Fi header information from the individual packet level 

is the primary source of features used by DCP.  Features from the flow level 

and connection level can be extracted and derived.  Applying a more 

complex approach that factors device interactions with time-based features 

may produce more promising results.    
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5. Classification algorithms.  More classification algorithms and techniques 

can be applied.  A myriad of sophisticated techniques, including support 

vector machines and deep learning, exist that may yield better classification 

performances. 
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Appendix A. Device Details 

Name Brand Model Model Number Serial Number Device Type Protocol Device Setup MAC Address 

August1 August Smart Lock ASL3B L4FWQ02EL4 Lock BLE Training   

August2 August Smart Lock ASL01 L1GHX005D6 Lock BLE Test   

Door1 Eve Door & Window 2ED309901000 CU49F1A03655 Door Sensor BLE Training   

Door2 Eve Door & Window 20EAL9901 DV13H1A00054 Door Sensor BLE Test   

Dropcam Dropcam WiFi Video 
Monitoring 

DROPCAM3H
DB 308CFB3A1AAD Camera WiFi Training 308CFB3A1AAD 

Home1 BLE Home Door Sensor   1444BE Door Sensor BLE Training   

Home2 BLE Home Door Sensor   1444A1 Door Sensor BLE Training   

Insight Belkin Wemo Insight 
Switch F7C029V2 231618K12013ED Plug WiFi Training 14918224DD35 

Kasa TPLink Kasa Cam KC120 2184339000783 Camera WiFi Test AC84C6977CCC 

Kevo Kwikset Kevo 925GED1500M
K2 3022AMK2 Lock BLE Training   

Lifx1 Lifx Lightbulb LHA19E26UC1
0 D073D526B84C Light Bulb WiFi Training D073D526B84C 

Lifx2 Lifx Lightbulb LHA19E26UC1
0 D073D526C927 Light Bulb WiFi Test D073D526C927 

Mini Belkin Wemo Mini F7C063 221708K0100DEA Plug WiFi Test 6038E0EE7CE5 
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Netcam1 Belkin NetCam HD+ F7D7602V2 35418VB2200526 Camera WiFi Training EC1A59E4FD41 

Netcam2 Belkin NetCam HD+ F7D7602V2 35418VB2200320 Camera WiFi Training EC1A59E4FA09 

Netcam3 Belkin NetCam HD+ F7D7602V2 35418VB2200833 Camera WiFi Test EC1A59E5020D 

Push SensorPush Smart Sensor HT1 2AL9XHT1 Temp Sensor BLE Training   

Room1 Eve Room 2ER309901000 BU45F1A03216 Temp Sensor BLE Training   

Room2 Eve Room 2ER309901000 BU35E1A02542 Temp Sensor BLE Test   

Yosemite Netgear Nighthawk X4S 
AC2600 R7800 4H4E855K01D4E Router WiFi NA 78D2944DAB3F 

Switch1 Belkin Wemo Switch F7C027 221621K01027F9 Plug WiFi Training 149182CDDF3D 

Switch2 Belkin Wemo Switch F7C027 221343K010034E Plug WiFi Training B4750E0D9465 

Switch3 Belkin Wemo Switch F7C027 221342K0101C51 Plug WiFi Test B4750E0D33D5 

Switch4 Belkin Wemo Switch F7C027 221417K01007F1 Plug WiFi Test 94103E2B7A55 

TpBulb TPLink Smart WiFi 
LED Bulb LB100E26 217C581015895 Light Bulb WiFi Training B04E26C52A41 

TpPlug TPLink Smart WiFi Plug HS100 2179815005849 Plug WiFi Test 704F57F9E1B8 
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Weather Eve Weather 2EW309901000 AU40F1A04650 Temp Sensor BLE Training   
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Appendix B.  Hyperparameter Tuning Script 

1. # coding: utf-8   
2.    
3. # In[12]:   
4.    
5.    
6. # from Pipeline import BLEPipeline, WifiPipeline   
7. from MulticlassDCP import BLEMulticlassDCP, WifiMulticlassDCP   
8.    
9. # General data processing   
10. import numpy as np   
11. import pandas as pd   
12.    
13. # Plotting   
14. import matplotlib.pyplot as plt   
15. import seaborn as sns   
16. import scikitplot as skplt   
17.    
18. # ML libraries   
19. from sklearn.discriminant_analysis import LinearDiscriminantAnalysis   
20. from sklearn.ensemble import RandomForestClassifier   
21. from sklearn.neighbors import KNeighborsClassifier   
22. from sklearn.metrics import balanced_accuracy_score, precision_score, recall_sco

re, roc_auc_score, confusion_matrix   
23. from sklearn.model_selection import GridSearchCV, KFold, cross_val_score   
24.    
25. # System libraries   
26. import itertools   
27. import random, time   
28.    
29. # Warning filtering   
30. import warnings   
31. warnings.filterwarnings("ignore", category=FutureWarning)   
32. warnings.filterwarnings("ignore", category=UserWarning)   
33. warnings.filterwarnings("ignore", category=DeprecationWarning)   
34. plt.rcParams.update({'figure.max_open_warning': 0})   
35.    
36.    
37. # # Wi-Fi Tuning   
38.    
39. # In[13]:   
40.    
41.    
42. start_time = time.time()   
43.    
44.    
45. # In[14]:   
46.    
47.    
48. w = WifiMulticlassDCP()   
49.    
50.    
51. # In[15]:   
52.    
53.    
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54. df = w.make_dataframe()   
55.    
56. # Take out packets from router   
57. df = df[df["DeviceType"]!="router"]   
58.    
59.    
60. # In[16]:   
61.    
62.    
63. # Divide training and test sets   
64. df_train = df[df['Set']=='train']   
65. df_test = df[df['Set']=='test']   
66.    
67.    
68. # In[17]:   
69.    
70.    
71. # Wifi: Define which features to use   
72. features_list = [   
73.         # Packet info   
74.         "PacketLength",   
75.            
76.         # Vendor    
77.          "Belkin", "Dropcam", "Lifi", "Tp-link",   
78.        
79.         # 802.11 Data subtype   
80.         "Data", "QoS_Data", "QoS_Null",   
81.    
82.         # Associated Packets   
83.         "Assoc_Packets"]   
84.    
85. # Define what the response classes are   
86. y_list = ["bulb", "camera", "plug"]   
87.    
88.    
89. # In[18]:   
90.    
91.    
92. # Define grid values   
93. knn_param_grid = dict(n_neighbors=np.arange(1,19,2))   
94. rf_param_grid = dict(max_features=np.linspace(2, len(features_list), num=5, dtyp

e=int))   
95. lda_param_grid = dict(n_components=np.arange(1,5))   
96.    
97. # Time wifi gridsearch   
98. wifi_start = time.time()   
99.    
100. # Run gridsearch   
101. w_knn = w.tune_gridsearch(KNeighborsClassifier(), knn_param_grid, df_tra

in,    
102.                         features_list, y_list)   
103. w_rf = w.tune_gridsearch(RandomForestClassifier(), rf_param_grid, df_tra

in,    
104.                        features_list, y_list)   
105. w_lda = w.tune_gridsearch(LinearDiscriminantAnalysis(priors=[0.61678342,

 0.37815795, 0.00505862]), lda_param_grid, df_train,    
106.                         features_list, y_list)   
107.    
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108. wifi_end = time.time() - wifi_start   
109.    
110.    
111. # In[19]:   
112.    
113.    
114. print wifi_end, "sec"   
115.    
116.    
117. # In[20]:   
118.    
119.    
120. print w_knn['grid_result'].best_score_, w_knn['grid_result'].best_params

_   
121. print w_lda['grid_result'].best_score_, w_lda['grid_result'].best_params

_   
122. print w_rf['grid_result'].best_score_, w_rf['grid_result'].best_params_ 

  
123.    
124.    
125. # In[21]:   
126.    
127.    
128. w.plot_all_vcs([w_knn, w_lda, w_rf])   
129.    
130.    
131. # # BLE Tuning   
132.    
133. # In[22]:   
134.    
135.    
136. b = BLEMulticlassDCP()   
137.    
138.    
139. # In[23]:   
140.    
141.    
142. bdf = b.make_dataframe()   
143.    
144.    
145. # In[24]:   
146.    
147.    
148. # Divide training and test sets   
149. bdf_train = bdf[bdf['Set']=='train']   
150. bdf_test = bdf[bdf['Set']=='test']   
151.    
152.    
153. # In[25]:   
154.    
155.    
156. # BLE: Define which features to use   
157. features_list = [   
158.     # Packet info   
159.     "PacketLength", "BLE_LL_Length",   
160.        
161.     # Associate Packets   
162.     "Assoc_Packets",   
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163.        
164.     # Channel number   
165.     "Channel_0", "Channel_12", "Channel_39",   
166.        
167.     # PDU Type   
168.     "SCAN_RSP", "ADV_IND", "SCAN_REQ",    
169.     "CONNECT_REQ", "ADV_NONCONN_IND", "ADV_DIRECT_IND"]   
170.    
171. y_list = ["door", "lock", "temp"]   
172.    
173.    
174. # In[26]:   
175.    
176.    
177. # Define grid values   
178. knn_param_grid = dict(n_neighbors=np.arange(1,19,2))   
179. rf_param_grid = dict(max_features=np.linspace(2, len(features_list), num

=5, dtype=int))   
180. lda_param_grid = dict(n_components=np.arange(1,5))   
181.    
182. # Time BLE gridsearch   
183. ble_start = time.time()   
184.    
185. # Run gridsearch   
186. b_knn = b.tune_gridsearch(KNeighborsClassifier(), knn_param_grid, bdf_tr

ain,    
187.                         features_list, y_list)   
188. b_rf = b.tune_gridsearch(RandomForestClassifier(), rf_param_grid, bdf_tr

ain,    
189.                        features_list, y_list)   
190. b_lda = b.tune_gridsearch(LinearDiscriminantAnalysis(priors=[0.59063441,

 0.23399223, 0.17537336]), lda_param_grid, bdf_train,    
191.                         features_list, y_list)   
192.    
193. ble_end = ble_start - time.time()   
194.    
195.    
196. # In[27]:   
197.    
198.    
199. print ble_end   
200.    
201.    
202. # In[28]:   
203.    
204.    
205. print b_knn['grid_result'].best_score_, b_knn['grid_result'].best_params

_   
206. print b_lda['grid_result'].best_score_, b_lda['grid_result'].best_params

_   
207. print b_rf['grid_result'].best_score_, b_rf['grid_result'].best_params_ 

  
208.    
209.    
210. # In[29]:   
211.    
212.    
213. b.plot_all_vcs([b_knn, b_lda, b_rf])   
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214.    
215.    
216. # In[30]:   
217.    
218.    
219. end_time =  time.time() - start_time   
220. total_gridsearch_time = ble_end + wifi_end    
221. print total_gridsearch_time, "sec"   
222. print end_time, "sec"   
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Appendix C.  Experimental Procedure 

1. Set up devices in designated locations as described in Section 3.2.5.  Configure 

device actions as described on Table 4.   

2. Set up motion source.  Ensure Arduino microcontroller is powered on and 

operational. 

3. Let devices reach steady state over the course of one day. 

4. Perform scans using Plugable Bluetooth adapter and Alfa card.  Use the commands 

as described in Figure 22 and 15 for Wi-Fi scanning, and Figure 25 for BLE 

scanning.  

5. Perform sniffing using Ubertooth One sniffers and Alfa card.  Use the commands 

as described in Section 3.3.2.  Let run for 8 hours.  Perform for a total of three days.   

6. Perform model tuning by executing the Jupyter notebook in Appendix B.  Update 

MulticlassDCP.py with the best-performing hyperparameter values.  Find class 

prior probability values and update LDA classifier in MulticlassDCP.py with these 

values. 

7. Perform data preprocessing and model testing.  Use the Jupyter notebooks in 

Appendix D and Appendix E for BLE testing and Wi-Fi testing, respectively.   
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Appendix D.  Multiclass BLE Classification  

1. # coding: utf-8   
2.    
3. # In[1]:   
4.    
5.    
6. from MulticlassDCP import BLEMulticlassDCP   
7.    
8. # General data processing   
9. import numpy as np   
10. import pandas as pd   
11.    
12. # Plotting   
13. import matplotlib.pyplot as plt   
14. import seaborn as sns   
15.    
16. # ML libraries   
17. from sklearn.discriminant_analysis import LinearDiscriminantAnalysis   
18. from sklearn.ensemble import RandomForestClassifier   
19. from sklearn.neighbors import KNeighborsClassifier   
20. from sklearn.metrics import balanced_accuracy_score, precision_score, recall_sco

re, confusion_matrix, matthews_corrcoef   
21. from sklearn.model_selection import GridSearchCV, cross_val_score   
22. from imblearn.under_sampling import RandomUnderSampler   
23.    
24. # System libraries   
25. import itertools   
26. import random, time   
27.    
28. # Warning filtering   
29. import warnings   
30. warnings.filterwarnings("ignore", category=FutureWarning)   
31. warnings.filterwarnings("ignore", category=UserWarning)   
32. warnings.filterwarnings("ignore", category=DeprecationWarning)   
33. plt.rcParams.update({'figure.max_open_warning': 0})   
34.    
35.    
36. # # Create, process dataframe   
37.    
38. # In[2]:   
39.    
40.    
41. start_time = time.time()   
42.    
43.    
44. # In[3]:   
45.    
46.    
47. b = BLEMulticlassDCP()   
48.    
49.    
50. # In[4]:   
51.    
52.    
53. df = b.make_dataframe()   
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54.    
55.    
56. # # Prep dataset   
57.    
58. # In[5]:   
59.    
60.    
61. # BLE: Define which features to use   
62. features_list = [   
63.     # Packet info   
64.     "PacketLength", "BLE_LL_Length",   
65.        
66.     # Associate Packets   
67.     "Assoc_Packets",   
68.        
69.     # Channel number   
70.     "Channel_0", "Channel_12", "Channel_39",   
71.        
72.     # PDU Type   
73.     "SCAN_RSP", "ADV_IND", "SCAN_REQ",    
74.     "CONNECT_REQ", "ADV_NONCONN_IND", "ADV_DIRECT_IND"]   
75.    
76. y_list = ["door", "lock", "temp"]   
77.    
78.    
79. # In[6]:   
80.    
81.    
82. # Prep training set   
83. df_train = df[df['Set']=='train']   
84. print df_train['DeviceType'].value_counts()   
85.    
86.    
87. # In[7]:   
88.    
89.    
90. df_test = df[df['Set']=='test']   
91.    
92. # Show initial test set imbalance   
93. print "Initial test set distribution:"   
94. print df_test['DeviceType'].value_counts()   
95. df_test['DeviceType'].value_counts().sort_index().plot(kind='bar', title="Test P

acket Counts Before Resampling",logy=True);   
96.    
97.    
98. # In[8]:   
99.    
100.    
101. # Downsample test set so that there is equal chance that the classifier 

will choose any given class   
102. rds = RandomUnderSampler(random_state=42)   
103. test_X_downsampled, test_y_downsampled = rds.fit_resample(df_test[featur

es_list], df_test['DeviceType'])   
104.    
105. # Show class counts after downsampling   
106. unique, counts = np.unique(test_y_downsampled, return_counts=True)   
107. print np.asarray((unique, counts)).T   
108.    
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109.    
110. # In[9]:   
111.    
112.    
113. # Recreate df_test    
114. df_test_downsampled = pd.DataFrame(test_X_downsampled,columns=features_l

ist)   
115. df_test_downsampled['DeviceType'] = test_y_downsampled   
116.    
117.    
118. # # Run multiclass on all features   
119.    
120. # In[10]:   
121.    
122.    
123. multiclass_start = time.time()   
124.    
125. preds, metrics, cms, feature_importance = b.run_multiclass(df_train, df_

test_downsampled, features_list, y_list)   
126.    
127. multiclass_end = time.time() - multiclass_start   
128.    
129.    
130. # ## Report results   
131.    
132. # ### Report confusion matrices   
133.    
134. # In[11]:   
135.    
136.    
137. b.plot_all_confusion_matrices(cms, y_list)   
138.    
139.    
140. # ### Report metrics   
141.    
142. # In[12]:   
143.    
144.    
145. metrics_df = b.report_metrics(metrics, y_list, 'ble-

multiclass_metrics')   
146. display(metrics_df)   
147.    
148.    
149. # ### Report feature importance   
150.    
151. # In[13]:   
152.    
153.    
154. f_i = b.report_featureimportance(feature_importance, features_list)   
155. display(f_i)   
156.    
157.    
158. # # Residuals Analysis   
159.    
160. # ## Use *k* top features only   
161.    
162. # ### Find *k* where *k* is the count of features that yields best BACC 
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163.    
164. # In[14]:   
165.    
166.    
167. fs_start = time.time()   
168.    
169. # Find best features using KBest scheme   
170. feature_selection = []   
171. for i in range(0,len(f_i)):   
172.     top_features = list(f_i.index[0:i+1])   
173.    
174.     tf_preds, tf_metrics, tf_cms, tf_feature_importance = b.run_multicla

ss(df_train, df_test_downsampled, top_features, y_list,use_tuned=False)   
175.     tf_metrics_df = b.report_metrics(tf_metrics, y_list, to_csv=False)   
176.        
177.     ave = np.average(tf_metrics_df['Mean_Recall'])   
178.     feature_selection.append(ave)   
179.        
180. fs_end = time.time() - fs_start   
181.    
182.    
183. # In[15]:   
184.    
185.    
186. k = feature_selection.index(max(feature_selection))   
187. print 'Best Mean Recall',max(feature_selection),":", k+1, "features"   
188.    
189.    
190. # In[16]:   
191.    
192.    
193. feature_selection   
194.    
195.    
196. # ### Run multiclass with top *k* features (*k* = 3)   
197.    
198. # In[17]:   
199.    
200.    
201. # Run multiclass with top 3 features   
202. tf_preds, tf_metrics, tf_cms, tf_feature_importance = b.run_multiclass(d

f_train, df_test_downsampled, list(f_i.index[0:k+1]), y_list,use_tuned=False)   
203.    
204.    
205. # In[18]:   
206.    
207.    
208. tf_metrics_df = b.report_metrics(tf_metrics, y_list, 'ble-

topfeatures_metrics')   
209. display(tf_metrics_df)   
210.    
211.    
212. # ### Plot confusion matrices   
213.    
214. # In[19]:   
215.    
216.    
217. b.plot_all_confusion_matrices(tf_cms, y_list)   
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218.    
219.    
220. # ### Report feature importance of TF3   
221.    
222. # In[20]:   
223.    
224.    
225. b.report_featureimportance(tf_feature_importance, f_i.index[0:k+1])   
226.    
227.    
228. # ## Error analysis   
229.    
230. # **Error 1**: The main error across all classifiers is the misclassific

ation of door devices as temp devices.   
231.    
232. # In[21]:   
233.    
234.    
235. # Get door and temp packets   
236. df_train_doortemp = df_train[(df_train['DeviceType']=='door') | (df_trai

n['DeviceType']=='temp')]   
237.    
238. df_test_doortemp = df_test_downsampled[(df_test_downsampled['DeviceType'

]=='door') | (df_test_downsampled['DeviceType']=='temp')]   
239.    
240.    
241. # In[22]:   
242.    
243.    
244. # Run multiclass on just the two device types   
245. doortemp_preds, doortemp_metrics, doortemp_cms, doortemp_feature_importa

nce = b.run_multiclass(df_train_doortemp, df_test_doortemp, features_list, ['doo
r','temp'],use_tuned=False)   

246.    
247.    
248. # In[23]:   
249.    
250.    
251. doortemp_metrics_df = b.report_metrics(doortemp_metrics, ['door','temp']

, 'ble-doortemp_metrics')   
252. display(doortemp_metrics_df)   
253.    
254.    
255. # In[24]:   
256.    
257.    
258. b.plot_all_confusion_matrices(doortemp_cms, ['door','temp'])   
259.    
260.    
261. # It appears that with just the two classes, the classifiers cannot dist

inguish between the two devices. The next step is to look at the feature selecti
on   

262.    
263. # In[25]:   
264.    
265.    
266. b.report_featureimportance(doortemp_feature_importance, features_list)   
267.    
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268.    
269. # In[26]:   
270.    
271.    
272. # Run door vs temp with top 3 features   
273. dt3_preds, dt3_metrics, dt3_cms, dt3_feature_importance = b.run_multicla

ss(df_train_doortemp, df_test_doortemp, features_list[0:3], ['door','temp'],use_
tuned=False)   

274.    
275.    
276. # In[27]:   
277.    
278.    
279. b.report_metrics(dt3_metrics, ['door','temp'], 'ble-dt3_metrics')   
280.    
281.    
282. # No difference with top 3 features.   
283.    
284. # In[28]:   
285.    
286.    
287. f, axes = plt.subplots(3, 1, figsize=(6, 14))   
288. sns.countplot(x='DeviceType', hue='PacketLength',ax=axes[0], data=df_tes

t_doortemp);   
289. sns.countplot(x='DeviceType', hue='BLE_LL_Length',ax=axes[1], data=df_te

st_doortemp);   
290. sns.countplot(x='DeviceType', hue='Assoc_Packets',ax=axes[2], data=df_te

st_doortemp);   
291.    
292.    
293. # # Report times   
294.    
295. # In[29]:   
296.    
297.    
298. print multiclass_end   
299. print fs_end   
300. end_time = time.time() - start_time   
301. print end_time   
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Appendix E. Multiclass Wi-Fi Classification 

1. # coding: utf-8   
2.    
3. # In[1]:   
4.    
5.    
6. # from Pipeline import WifiPipeline   
7. from MulticlassDCP import WifiMulticlassDCP   
8.    
9. # General data processing   
10. import numpy as np   
11. import pandas as pd   
12.    
13. # Plotting   
14. import matplotlib.pyplot as plt   
15. import seaborn as sns   
16.    
17. # ML libraries   
18. from sklearn.discriminant_analysis import LinearDiscriminantAnalysis   
19. from sklearn.ensemble import RandomForestClassifier   
20. from sklearn.neighbors import KNeighborsClassifier   
21. from sklearn.metrics import balanced_accuracy_score, precision_score, recall_sco

re, confusion_matrix, matthews_corrcoef   
22. from sklearn.model_selection import GridSearchCV, cross_val_score   
23. from imblearn.under_sampling import RandomUnderSampler   
24.    
25. # System libraries   
26. import itertools   
27. import random, time   
28.    
29. # Warning filtering   
30. import warnings   
31. warnings.filterwarnings("ignore", category=FutureWarning)   
32. warnings.filterwarnings("ignore", category=UserWarning)   
33. warnings.filterwarnings("ignore", category=DeprecationWarning)   
34. plt.rcParams.update({'figure.max_open_warning': 0})   
35.    
36.    
37. # # Create, process dataframe   
38.    
39. # In[2]:   
40.    
41.    
42. start_time = time.time()   
43.    
44.    
45. # In[3]:   
46.    
47.    
48. w = WifiMulticlassDCP()   
49.    
50.    
51. # In[4]:   
52.    
53.    
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54. df = w.make_dataframe()   
55.    
56. # Take out packets from router   
57. df = df[df["DeviceType"]!="router"]   
58. print len(df)   
59.    
60.    
61. # # Prep dataset   
62.    
63. # In[5]:   
64.    
65.    
66. # Wifi: Define which features to use   
67. features_list = [   
68.         # Packet info   
69.         "PacketLength",   
70.            
71.         # Vendor    
72.          "Belkin", "Dropcam", "Lifi", "Tp-link",   
73.        
74.         # 802.11 Data subtype   
75.         "Data", "QoS_Data", "QoS_Null",   
76.    
77.         # Associated Packets   
78.         "Assoc_Packets"]   
79.    
80. # Define what the response classes are   
81. y_list = ["bulb", "camera", "plug"]   
82.    
83.    
84. # In[6]:   
85.    
86.    
87. # Prep training set   
88. df_train = df[df['Set']=='train']   
89. print df_train['DeviceType'].value_counts()   
90.    
91.    
92. # In[7]:   
93.    
94.    
95. df_test = df[df['Set']=='test']   
96.    
97. # Show initial test set imbalance   
98. print "Initial test set distribution:"   
99. print df_test['DeviceType'].value_counts()   
100. df_test['DeviceType'].value_counts().sort_index().plot(kind='bar', title

="Test Packet Counts Before Resampling",logy=True);   
101.    
102.    
103. # In[8]:   
104.    
105.    
106. # Downsample test set so that there is equal chance that the classifier 

will choose any given class   
107. rds = RandomUnderSampler(random_state=42)   
108. test_X_downsampled, test_y_downsampled = rds.fit_resample(df_test[featur

es_list], df_test['DeviceType'])   
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109.    
110. # Show class counts after downsampling   
111. unique, counts = np.unique(test_y_downsampled, return_counts=True)   
112. print np.asarray((unique, counts)).T   
113.    
114.    
115. # In[9]:   
116.    
117.    
118. # Recreate df_test    
119. df_test_downsampled = pd.DataFrame(test_X_downsampled,columns=features_l

ist)   
120. df_test_downsampled['DeviceType'] = test_y_downsampled   
121.    
122.    
123. # # Run multiclass   
124.    
125. # In[10]:   
126.    
127.    
128. multiclass_start = time.time()   
129.    
130. preds, metrics, cms, feature_importance = w.run_multiclass(df_train, df_

test_downsampled, features_list, y_list)   
131.    
132. multiclass_end = time.time() - multiclass_start   
133.    
134.    
135. # # Report results   
136.    
137. # ## Report confusion matrices   
138.    
139. # In[11]:   
140.    
141.    
142. w.plot_all_confusion_matrices(cms, y_list)   
143. plt.savefig('Results/CM/wifi-cm-full.png')   
144.    
145.    
146. # ## Report metrics   
147.    
148. # In[12]:   
149.    
150.    
151. metrics_df = w.report_metrics(metrics, y_list, 'wifi-

multiclass_metrics')   
152. display(metrics_df)   
153.    
154.    
155. # ## Report feature importance   
156.    
157. # In[13]:   
158.    
159.    
160. f_i = w.report_featureimportance(feature_importance, features_list)   
161. display(f_i)   
162.    
163.    
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164. # # Residuals Analysis   
165.    
166. # ## Use only top 3 features   
167.    
168. # ### Run multiclass with top 3 features   
169.    
170. # In[14]:   
171.    
172.    
173. fs_start = time.time()   
174. # Run multiclass with top 3 features   
175. tf3_preds, tf3_metrics, tf3_cms, tf3_feature_importance = w.run_multicla

ss(df_train, df_test_downsampled, list(f_i.index[0:3]), y_list, use_tuned=False,
 use_priors=True)   

176.    
177. fs_end = time.time() - fs_start   
178.    
179.    
180. # In[15]:   
181.    
182.    
183. tf3_metrics_df = w.report_metrics(tf3_metrics, y_list, 'wifi-

tf3_metrics')   
184. display(tf3_metrics_df)   
185.    
186.    
187. # ### Plot confusion matrices   
188.    
189. # In[16]:   
190.    
191.    
192. w.plot_all_confusion_matrices(tf3_cms, y_list)   
193. plt.savefig('Results/CM/wifi-cm-best3.png')   
194.    
195.    
196. # ### Report feature importance of 3 best   
197.    
198. # In[17]:   
199.    
200.    
201. w.report_featureimportance(tf3_feature_importance, f_i.index[0:3])   
202.    
203.    
204. # ## Remove vendor features   
205.    
206. # In[18]:   
207.    
208.    
209. # Remove vendors features   
210. nv_features = ['PacketLength', 'Data', 'QoS_Data', 'QoS_Null', 'Assoc_Pa

ckets']   
211.    
212.    
213. # In[19]:   
214.    
215.    
216. nv_start = time.time()   
217.    



 

127 

218. # Run multiclass without vendors   
219. nv_preds, nv_metrics, nv_cms, nv_feature_importance = w.run_multiclass(d

f_train, df_test_downsampled, nv_features, y_list, use_tuned=False)   
220.    
221. nv_end = time.time() - nv_start   
222.    
223.    
224. # In[20]:   
225.    
226.    
227. nv_metrics_df = w.report_metrics(nv_metrics, y_list, 'wifi-

novendor_metrics')   
228. display(nv_metrics_df)   
229.    
230.    
231. # In[21]:   
232.    
233.    
234. w.plot_all_confusion_matrices(nv_cms, y_list)   
235. plt.savefig('Results/CM/wifi-cm-novendor.png')   
236.    
237.    
238. # In[22]:   
239.    
240.    
241. w.report_featureimportance(nv_feature_importance, nv_features)   
242.    
243.    
244. # ## Error analysis   
245.    
246. # In[23]:   
247.    
248.    
249. def output_decisionpath(model, features_list, class_names, filename):   
250.     # Source: https://towardsdatascience.com/how-to-visualize-a-

decision-tree-from-a-random-forest-in-python-using-scikit-learn-38ad2d75f21c   
251.    
252.     # Extract single tree   
253.     estimator = model.estimators_[5]   
254.    
255.     from sklearn.tree import export_graphviz   
256.     # Export as dot file   
257.     export_graphviz(estimator, out_file='tree.dot',    
258.                     feature_names = features_list,   
259.                     class_names = class_names,   
260.                     rounded = True, proportion = False,    
261.                     precision = 2, filled = True)   
262.    
263.     # Convert to png using system command (requires Graphviz)   
264.     from subprocess import call   
265.     call(['dot', '-Tpng', 'tree.dot', '-

o', 'Results/'+filename+'.png', '-Gdpi=600'])   
266.    
267.    
268. # **Error 1**: KNN and RF confuse camera and plugs   
269.    
270. # In[24]:   
271.    
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272.    
273. # Get camera and plug packets   
274. df_train_camplugs = df_train[(df_train['DeviceType']=='camera') | (df_tr

ain['DeviceType']=='plug')]   
275.    
276. df_test_camplugs = df_test_downsampled[(df_test_downsampled['DeviceType'

]=='camera') | (df_test_downsampled['DeviceType']=='plug')]   
277.    
278.    
279. # Isolate the two classes   
280.    
281. # In[25]:   
282.    
283.    
284. # Run multiclass on just the two device types   
285. camplugs_preds, camplugs_metrics, camplugs_cms, camplugs_feature_importa

nce = w.run_multiclass(df_train_camplugs, df_test_camplugs, features_list, ['cam
era','plug'], use_tuned=False, use_priors=False)   

286.    
287.    
288. # In[26]:   
289.    
290.    
291. camplugs_metrics_df = w.report_metrics(camplugs_metrics, ['camera','plug

'], 'wifi-camplugs_metrics')   
292. display(camplugs_metrics_df)   
293.    
294.    
295. # In[27]:   
296.    
297.    
298. w.plot_all_confusion_matrices(camplugs_cms, ['camera','plug'])   
299. plt.savefig('Results/CM/wifi-cm-camplug-full.png')   
300.    
301.    
302. # In[28]:   
303.    
304.    
305. w.report_featureimportance(camplugs_feature_importance, features_list)   
306.    
307.    
308. # Show features   
309.    
310. # In[29]:   
311.    
312.    
313. f, axes = plt.subplots(3, 1, figsize=(6, 14))   
314. sns.countplot(x='DeviceType', hue='Belkin',ax=axes[0], data=df_test_camp

lugs);   
315. sns.countplot(x='DeviceType', hue='Dropcam',ax=axes[1], data=df_test_cam

plugs);   
316. sns.countplot(x='DeviceType', hue='Assoc_Packets',ax=axes[2], data=df_te

st_camplugs);   
317. plt.legend(loc='upper right');   
318.    
319.    
320. # Use only top 3 features for camera vs plugs classification   
321.    
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322. # In[30]:   
323.    
324.    
325. # Run multiclass on just the two device types    
326. camplugs_preds_bf, camplugs_metrics_bf, camplugs_cms_bf, camplugs_featur

e_importance_bf= w.run_multiclass(df_train_camplugs, df_test_camplugs, ['Belkin'
,'Dropcam','Assoc_Packets'], ['camera','plug'], use_tuned=False, use_priors=Fals
e)   

327.    
328.    
329. # In[31]:   
330.    
331.    
332. camplugs_metrics__bf_df = w.report_metrics(camplugs_metrics_bf, ['camera

','plug'], 'wifi-camplugs_bestfeatures_metrics')   
333. display(camplugs_metrics__bf_df)   
334.    
335.    
336. # In[32]:   
337.    
338.    
339. w.plot_all_confusion_matrices(camplugs_cms_bf, ['camera','plug'])   
340. plt.savefig('Results/CM/wifi-cm-camplug-best3.png')   
341.    
342.    
343. # In[33]:   
344.    
345.    
346. w.report_featureimportance(camplugs_feature_importance_bf, ['Belkin','Dr

opcam','Assoc_Packets'])   
347.    
348.    
349. # In[34]:   
350.    
351.    
352. print multiclass_end   
353. print fs_end   
354. print nv_end   
355. print time.time() - start_time   
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Appendix F.  Classification Analysis Graphs 

 

Figure 44.  BLE Door Sensors vs. Temperature Sensors Features 
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Figure 45.  Wi-Fi Cameras vs. Plugs Features 
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